Caitao Zhan

Personal Website Google Scholar GitHub Profile LinkedIn Profile Email Me

ABOUT ME

I now work in quantum networking/computing/sensing. Previously I work in classical networking/computing/sensing.

EDUCATION

Aug. 2017 \sim Jan. 2024	Stony Brook University GPA: 3.9/4.0	Ph.D. Candidate in Computer Science Advisor: Himanshu Gupta
Sept. $2013 \sim \text{Jun. } 2017$	China University of Geosciences GPA: 92/100	B.S. in Computer Science and Technology Rank: 1/122

EMPLOYMENT

Feb. $2024 \sim \text{Present}$	Postdoc @ Argonne National Lab (DSL) Quantum networks, involved in Q-Next and InterQNet
May 2021 \sim Aug. 2021	Software Engineering Intern @ Microsoft (Azure)
Jun. 2018 \sim Jan. 2024	Research assistant @ Stony Brook University Wireless sensor networks, data center networks, quantum networks, and quantum sensor networks
Sep. $2017 \sim \text{May } 2018$	Teaching assistant @ Stony Brook University

RESEARCH EXPERIENCE

Jan. 2021 \sim present	Efficient Quantum Communication Networks. [8, 13] Design/implement routing algorithms/protocols for quantum networks. Bell states, GHZ, Graph states.
Sep. $2021 \sim \text{present}$	Discrete Outcome Quantum Sensor Networks. [9, 12] Quantum state/channel discrimination, initial state optimization, semidefinite programming, theory.
Aug. 2022 \sim Sep. 2023	Quantum Sensor Network Algorithms for Transmitter Localization. [10] Quantum sensing, quantum state discrimination, quantum machine learning
Nov. $2019 \sim \text{Mar. } 2022$	Intelligent Radio with Deep Learning. [5, 7, 11] Design/implement CNNs to solve wireless network problems: wireless localization & spectrum allocation. Reframe wireless problems to computer vision problems: image-to-image translation & object detection.
Mar. 2019 \sim Oct. 2019	Efficient Localization of Multiple Intruders in Shared Spectrum System. [3] Design/implement. Bayesian approach. Testbed(Odroid,Raspberry Pi,USRP,HackRF).
Dec 2018 \sim Sep. 2020	Datacenter Networks. [4] Multi-hop circuit switch scheduling. Greedy, approximation proof. Participate in implementation.
July 2018 \sim July 2019	Selection of Sensors for Efficient Transmitter Localization. [2, 6] Implement. Greedy, approximation proof. Bayesian approach. GPU acceleration.
Oct. $2015 \sim \text{Sept. } 2016$	Optimization using Evolutionary Algorithms. [1] Design/implement. Shortest path-finding using ant colony optimization algorithms. Proposed a probability-based evolutionary algorithm solving shape formation problems.

Skills & Tools

Python and C++ are my most frequently used languages. I also have experience in C#, Java, C, and Matlab. Machine learning: PyTorch, scikit-learn, and ML.NET. Quantum: quantum network simulator NetSquid, quantum development SDK Qiskit, and quantum machine learning library TorchQuantum. GPU programming: CUDA and Numba. Software-defined radio: GNU Radio. Database: MySQL and SQLite. Convex optimization: OR-Tools and CVXPY.

SELECTED AWARDS AND HONORS

China National Scholarship $2^{\rm nd}$ Prize in Freshman ACM ICPC Cup Travel Grant for ACM IMC Best Poster Award (Participants Choice) in Graduate Research Day

2014, Chinese Ministry of Education, Top 1%2014, China University of Geosciences, Top 6%2018, ACM Internet Measurement Conference2022, Department of CS, Stony Brook University

ACADEMIC SERVICES

Artifact Evaluation Committee of ACM MobiCom 2023

Shadow Program Committee of ACM SenSys 2022

Reviewer of {Elsevier The Journal of Networks and Computer Applications, Elsevier Pervasive and Mobile Computing, IEEE/ACM Transactions on Networking, IEEE Internet of Things Journal, IEEE Open Journal of the Communications Society}.

MENTORSHIP EXPERIENCE

Xiaojie Fan (Stony Brook University)

Unpublished

[13] X. Fan, C. Zhan, H. Gupta, C.R. Ramakrishnan, "Optimized Distribution of Entanglement Graph States in Quantum Networks". In submission.

PUBLICATION

- [12] C. Zhan, H. Gupta, M. Hillery, "Optimizing Initial State of Detector Sensors in Quantum Sensor Networks". ACM Transactions on Quantum Computing (TQC), arXiv
- [11] M. Ghaderibaneh, C. Zhan, H. Gupta, "DeepAlloc: CNN-Based Approach to Efficient Spectrum Allocation in Shared Spectrum Systems". To appear in IEEE Access, PDF
- [10] C. Zhan, H. Gupta, "Quantum Sensor Network Algorithms for Transmitter Localization". IEEE Quantum Computing and Engineering (QCE) 2023, PDF.
- [9] M. Hillery, H. Gupta, C. Zhan, "Discrete Outcome Quantum Sensor Networks". Physical Review A (PRA), PDF.
- [8] M. Ghaderibaneh, C. Zhan, C.R. Ramakrishnan, H. Gupta, "Efficient Quantum Network Communication using Optimized Entanglement-Swapping Trees", IEEE Transactions on Quantum Engineering (TQE) 2022. PDF.
- [7] C. Zhan, M. Ghaderibaneh, P. Sahu, H. Gupta, "DeepMTL Pro: Deep Learning Based Multiple Transmitter Localization and Power Estimation", Elsevier Pervasive and Mobile Computing (PMC) 2022. PDF.
- [6] A. Bhattacharya, C. Zhan, A. Maji, H. Gupta, S. Das, P. Djuric, "Selection of Sensors for Efficient Transmitter Localization", IEEE/ACM Transactions on Networking (TON) 2021. PDF.
- [5] **C. Zhan**, M. Ghaderibaneh, P. Sahu, H. Gupta, "DeepMTL: Deep Learning Based Multiple Transmitter Localization", IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) 2021.
- [4] H. Gupta, M. Curran, C. Zhan, "Near-Optimal Multihop Scheduling in General Circuit-Switched Networks", ACM International Conference on emerging Networking Experiments and Technologies (CoNEXT) 2020. PDF.
- [3] C. Zhan, H. Gupta, A. Bhattacharya, M. Ghaderibaneh, "Efficient Localization of Multiple Intruders in Shared Spectrum System", ACM/IEEE Information Processing in Sensor Networks (IPSN) 2020. PDF.
- [2] A. Bhattacharya, C. Zhan, H. Gupta, S. Das, P. Djuric, "Selection of Sensors for Efficient Transmitter Localization", IEEE International Conference on Computer Communications (INFOCOM) 2020. PDF.
- [1] C. Zhan and C. Li, "Shape Formation in Games: a Probability-based Evolutionary Approach", 2016 International Conference on Computational Intelligence and Security. PDF.