
DeepMTL: Deep Learning Based Multiple
Transmitter Localization

Caitao Zhan
Stony Brook University

cbzhan@cs.stonybrook.edu

Mohammad Ghaderibaneh
Stony Brook University

mghaderibane@cs.stonybrook.edu

Pranjal Sahu
Stony Brook University

psahu@cs.stonybrook.edu

Himanshu Gupta
Stony Brook University

hgupta@cs.stonybrook.edu

Abstract—In this paper, we address the problem of Multiple
Transmitters Localization (MTL), i.e., to determine the locations
of potential multiple transmitters in a field, based on readings
from a distributed set of sensors. In contrast to the widely
studied single transmitter localization problem, the MTL problem
has only been studied recently in a few works. MTL problem
is of great significance in many applications wherein intruders
may be present. E.g., in shared spectrum systems, detection of
unauthorized transmitters is imperative to efficient utilization of
the shared spectrum.

In this paper, we present DeepMTL, a novel deep-learning
approach to address the MTL problem. In particular, we frame
MTL as a sequence of two steps, each of which is a computer vision
problem: image-to-image translation and object detection. The
first step of image-to-image translation essentially maps an input
image representing sensor readings to an image representing
distribution of transmitter locations, and the second object
detection step derives precise locations of transmitters from the
image of transmitter distributions. For the first step, we design
our learning model sen2peak, while for the second step, we cus-
tomize a state-of-the-art object detection model YOLOv3-cust.
We demonstrate the effectiveness of our approach via extensive
large-scale simulations, and show that our approach outperforms
the previous approaches significantly (by 50% or more) in
accuracy performance metrics, and incurs an order of magnitude
less latency compared to other prior works.

Index Terms—Localization, Wireless Sensors, Deep Learning,
Image Translation, Object Detection

I. Introduction

The RF spectrum is a limited natural resource in great
demand due to the unabated increase in mobile (and hence,
wireless) data consumption [1]. In 2020, the U.S. FCC moves
to free up 100 MHz of previously military occupied mid-band
spectrum in the 3.45-3.55 GHz band for paving the way of
5G development. Also, the research and industry communities
have been addressing this capacity crunch via the development
of shared spectrum. Spectrum sharing is the simultaneous us-
age of a specific frequency band in a specific geographical area
and time by a number of independent entities where harmful
electromagnetic interference is mitigated through agreement
(i.e., policy, protocol) [2]. Spectrum sharing techniques are
also normally used in 5G networks to enhance spectrum effi-
ciency [3]. However, protection of spectrum from unauthorized
users is important in maximizing spectrum utilization.

Fig. 1. Spectrum monitoring, multiple transmitter localization by a distributed
set of sensors. DeepMTL is a deep-learning approach to multiple transmitter
localization which helps protect spectrum against unauthorized usage.

The increasing affordability of the software-defined radio
(SDR) technologies makes the shared spectrum particularly
prone to unauthorized usage or security attacks. With easy
access to SDR devices (e.g. HackRF, USRP), it is easy for
selfish users to transmit data on shared spectrum without any
authorization and potentially causing harmful interference to
the incumbent users. Such illegal spectrum usage could also
happen as a result of infiltration of computer virus or malware
on SDR devices. [3] depicts 3 cases of spectrum attack. As the
fundamental objective behind such shared spectrum paradigms
is to maximize spectrum utilization, the viability of such
systems depends on the ability to effectively guard the shared
spectrum against unauthorized usage. The current mechanisms
however to locate such unauthorized users (intruders) are
human-intensive and time-consuming, involving FCC enforce-
ment bureau which detects violations via complaints and
manual investigation [4]. Motivated by the above, we seek an
effective technique that is able to accurately localize multiple
simultaneous intruders (transmitters). Below, we describe the
multiple transmitter localization problem.

Multiple-Transmitter Localization (MTL). The transmitter
localization problem has been well-studied, but most of the fo-
cus has been on localizing a single intruder at a time. However,
it is important to localize multiple transmitters simultaneously
to effectively guard a shared spectrum system. E.g., a malware
or virus-based attachment could simultaneously cause many
devices to violate spectrum allocation rules; spectrum jamming
attacks would typically involve multiple transmitters. MoreU.S. Government work not protected by U.S. copyright

importantly, a technique limited by localization of a single
intruder could then be easily circumvented by an offender
by using multiple devices. The key challenge in solving the
multiple-transmitter localization (MTL) problem comes from
the fact that the deployed sensor would receive only a sum
of the signals from multiple transmitters, and separating the
signals may be impossible.

Prior Works on MTL. The MTL problem has been recently
addressed in a few prior works, among which SPLOT [4],
MAP∗ [5], and DeepTxFinder [6] are the most prominent.
SPLOT essentially decomposes the MTL problem to multiple
single-transmitter localization problems based on the sensors
with the highest power readings in a neighborhood. How-
ever, their technique implicitly assumes a propagation model,
and thus, may not work effectively in areas with complex
propagation characteristics, and it is not effective in the case
of transmitters being located close-by (a key challenging
scenario for MTL problem). Our recent work MAP∗ solves the
MTL problem using a hypothesis-driven Bayesian approach; in
particular, it uses prior training in the form of distributions of
sensor readings for various transmitter locations, and uses the
training data to determine the most likely configuration (i.e.,
transmitters’ locations and powers) for a given vector of sensor
readings. However, to circumvent the high computational
cost of a pure Bayesian approach, MAP∗ uses a divide and
conquer heuristic which results in somewhat high number of
misses and false alarms while still incurring high latency.
DeepTxFinder uses a CNN-based learning model approach;
however, they use a separate CNN-model for a specific number
of transmitters and thus may incur high training cost while also
limiting the number of transmitters that can be localized. In
our evaluations, we compare our work with each of the above
approaches.

Our Approach. As in prior works [4], [7], we assume a
crowdsourced sensing architecture wherein relatively low-cost
spectrum sensors are available for gathering signal strength
in the form of received power. We use a convolutional NNs
(CNNs) based approach to solve the MTL problem. In par-
ticular, we frame MTL as a sequence of two steps: image-to-
image translation and object detection, each of which is solved
using a trained CNN model. The first step of image-to-image
translation maps an input image representing sensor readings
to an image representing distribution of transmitter locations,
and the second object detection step derives precise locations
of transmitters from the image of transmitter distributions.

Motivation. Our overall approach and its various aspects are
motivated by the following considerations. First, we use a
learning-based strategy to preclude assuming a propagation
model [4] or conducting surveys of sensors reading distribu-
tions [5]. Assumption of propagation model suffers from the
fact that even sophisticated propagation models yield unsat-
isfactory accuracy and thus lead to degraded performance.
Moreover, even though a learning-based approach incurs a
one-time high training cost, it generally incurs minimal latency
during evaluation, which is an important consideration for

our MTL problem, a intruder detection should incur minimal
latency to be effective. Second, the geographical nature of
the MTL problem suggests that convolutional neural networks
(CNNs) are well-suited for efficient learning of the desired
function. In particular, the features of the MTL problem can
be represented in a 2D array corresponding to their geographic
locations, which can be fed as an input to an appropriate CNN
model which can leverage the spatial correlation among the
input features to facilitate efficient learning. Lastly, we use a
two-step architecture to facilitate efficient training by essen-
tially providing an additional intermediate target. In particular,
we are able to map each step to well-studied standard computer
vision problems, allowing us to build upon known techniques.

Overall Contributions. The overall goal of our work is to
develop an efficient technique for accurate localization of
simultaneously present multiple transmitters/intruders. In this
context, we make the following specific contributions.

1) We develop DeepMTL, a novel two-step CNN-based
approach, for the MTL problem that frames MTL as a
sequence of image-to-image translation and object detec-
tion problems.

2) For the first step of image-to-image translation, we
develop sen2peak, a CNN model, that translates an
image representing sensor readings into a target image
that encodes distributions of transmitter locations. For
the second step, we customize an available object de-
tection platform, YOLOv3, for our context, and develop
YOLOv3-cust that is able to accurately localize trans-
mitters in the image output by the first step.

3) We evaluate our techniques via large-scale simulations
and demonstrate their effectiveness and superior perfor-
mance compared to the prior works.

II. Background, Problem and Methodology

In this section, we describe the background of the shared
spectrum systems, formulate the MTL problem, then describe
our methodology.

Shared Spectrum System. In a shared spectrum paradigm,
the spectrum is shared among licensed users (primary users)
and unlicensed users (secondary users, SUs) in such a way
that the transmission from secondaries does not interfere with
that of the primaries (or secondaries from a higher-tier, in
case of a multi-tier shared spectrum system). In some shared
spectrum systems, the location and transmit power of the
primary users may be unavailable, as is the case with military
or navy radars in the CBRS band. Such sharing of spectrum is
generally orchestrated by a centralized entity called spectrum
manager, such as a spectrum database in TV white space [8]
or a central spectrum access system in the CBRS 3.5GHz
shared band [9]. The spectrum manager allocates spectrum
to requesting secondaries (i.e., permission to transmit up to
a certain transmit power at their location) based on their
location, spectrum demand, configurations of the primaries,
other active secondaries, prevailing channel conditions, etc.
Users that transmit without explicit permission are referred

to as unauthorized users or intruders; the MTL problem is to
essentially localize such intruders.

Problem Setting and Formal Definition. Consider a geo-
graphic area with a shared spectrum. Without loss of general-
ity, we assume a single channel throughout this paper (multiple
channels are handled similarly). For localization of intruders,
we assume available crowdsourced sensors that can observe
received signal in the channel of interest, and compute (total)
received signal strength indicator (RSSI). At any instant, there
may be a set of intruders present in the area with each intruder
at a certain location transmitting with a certain power which
may be different for different intruders. The MTL problem
is to determine the set of intruders with their locations at
each instant of time, based on the set of sensor observations
at that instant. In this paper, for simplicity, as in almost all
works [4], [6], [10] except [5], we assume only intruders
present, if any, i.e., we ignore the presence of PUs and any
authorized users, and thus, assume that the sensor readings
represent aggregate received power from the transmitters we
wish to localize. Note that presence of PUs and/or authorized
users can easily be incorporated by using a technique to
localize all (authorized as well as unauthorized) transmitters
and then remove the (known) authorized ones to determine
the remaining as unauthorized transmitters; this approach,
only increases the total number of potential transmitters to
be localized.

Methodology. In our context, each sensor communicates its
observation to a centralized spectrum manager which then
runs localization algorithms to localize any potential (multiple)
transmitters. We design and implement a novel two-step lo-
calization algorithm named DeepMTL, as illustrated in Fig. 3,
based on CNN models. The first step (Section III) is a four-
layer image-to-image translation CNN model that is trained
to translate an input image representing sensor readings to an
image of transmitters’ locations distributions. Each distribution
of a transmitter can be visualized as a mountain with a
peak, so we name this model sen2peak. The second step
(Section IV), called YOLOv3-cust, is a customized object-
detection platform build upon YOLOv3 [11] which localize
the objects/peaks in the translated image. The high-level
motivation behind our two-step design is to frame the overall
MTL problem in terms of well-studied learning problem(s).
The two steps facilitate efficient learning of the models by
supplying an intermediate target with the training samples.

III. Step 1: Sensor Readings to TX Location
Distributions

In this section, we present the first step of our overall
approach to the MTL problem, i.e., the image-to-image trans-
lation step which translates/transforms the sensor reading to
distributions of TX locations. Here, we first create a grayscale
image to represent the input sensor readings; this image
encodes both the sensors’ RSSI readings and the sensors’
physical location. We then train and use a convolutional neural
network (CNN) model to transform this input image to an

Fig. 2. First Step (Image to Image Translation) Input and Output Images. (a)
Area with distributed sensors and transmitters to be localized. (b) Input image
representing the sensors’ (RSSI) readings and locations. (c) Output/Target
Image, where we put a 2D Gaussian distribution with its “peak” at the
transmitter’s location.

output image which represents the distribution of TX locations.
Pixels in the output image that have higher values will have a
higher chance of having a TX being present at that location.

A. Input Image Representing Sensors’ Readings
We localize transmitters based on observations from a set

of sensors. The input of the localization method is sensor
observations. Here, an observation at an individual sensor is
the received power over a time window of a certain duration,
in the frequency channel of interest (we assume only one
channel). The received power is computed from the FFT
operation of the I/Q samples collected in a time window. An
observation vector (used in [4], [5]) is a vector of observations
from a set of distributed sensors, with each vector dimension
corresponding to a unique sensor. However, the observation
vector doesn’t include the location of the sensors explicitly.

In our setting, to represent complete information about
the sensors (locations and readings) in an image like input,
we represent the observations of sensors in a form of an
observation matrix X, which encodes the location as well as
the readings of the distributed sensors. In X, the entry Xi,j

denotes the observation of the sensor at location (i, j). If there
is no sensor at location (i, j), we assign the noise floor N
(i.e. -80 dBm) value to Xi,j. Fig. 2(b) shows how a 20 × 20
observation matrix is used to represent the input information
that contains both the RSSI and the spatial location of the
distributed sensors from an area that exists 3 transmitters in
Fig. 2 (a). Before we pass this observation matrix as input to
our CNN model, we do a normalization step; we first subtract
the N from each value and then divide it by −N /2. This
ensures that the value Xi,j is zero at locations without sensors,
and for locations with senors, the value Xi,j is a positive
number between zero and two. The input observation matrix
X can be looked upon as a gray-scale image. The color image
is a 3D matrix with 3 RGB channels, whereas the gray-scale
image is a 2D matrix with only one channel.

B. Output Image with TX locations’ Distribution
After devising the input representation, we now focus on

designing the output image to represent the distribution of TX
locations; the output image is essentially the “label” assigned
to each input image that guides the training of the CNN model.

Fig. 3. The overall CNN architecture of the DeepMTL model. (a) Architecture of the first step, a four layer image-to-image translation model (sen2peak).
The figure displays how the data volume flows through the various convolutional layers. C stands for Conv2d, and for each Conv2d layer, the five values
shown are [input-channel, output-channel, kernel-size, stride, padding]. G stands for group normalization, and, for each group normalization, the two values
shown are [number-of-groups, number-of-channels]. See §III for details. (b) The high-level idea of the second step that uses YOLOv3-cust, a customized
version of YOLOv3, to perform object/peak detection in the output image of the first step. This step returns the precise location coordinates of TX.

A straight forward representation that represents the TXs
with locations is to just use an array of (x, y) elements where
each (x, y) element is the location of a transmitter, as in [6].
However, this simple representation is less conducive to effi-
cient model learning, as the representation moves away from
spatial representation (by representing locations as positions in
the image) to explicit representation of locations by coordinate
values. E.g., in [6]’s CNN-based approach to MTL problem,
the authors assume a maximum number N of transmitters and
train as many as N+2 different CNN models and thus, limiting
the overall solution to the pre-defined maximum number of
transmitters. Instead, in our approach, we facilitate the learning
of the overall model, by solving the MTL problem in two steps,
and in this step of translating sensors’ reading to transmitter
locations’ distributions, we represent the output also as an
image. This approach allows us to use a spatial learning model
(e.g. CNN) for the second step too, and preclude use of
regression or fully-connected layers in the first step.

Label/Target as a Grayscale Image. Inspired by a recent
work on wireless localization problem [12] which represents
the input and targets as images, we also choose to represent
our target of the first step as a grayscale image. In the target
image, we use 25 (5x5) pixel values to represent presence
of a transmitter. It is desirable to use an odd side length
square (i.e. 3x3, 5x5, 7x7) for symmetry. For a 100x100
size input we use, while 3x3 gives too less information for
a target and 7x7 generates too many overlap for close-by
targets, 5x5 is the sweet spot. Other pixels far away from any
transmitter are zero valued. Among multiple potential ways
to represent a transmitter presence by a number of pixels,
we found that using a 2D Gaussian distribution around the
pixel of TX location, Fig. 2(c), yields best model performance.
Thus, a geographic area with multiple transmitters present
is represented by a grayscale image with multiple Gaussian
distributions, with each Gaussian distribution’s peak inside
the pixel corresponding to transmitter’s location. Based on
preliminary performance tests, we picked the amplitude of the
2D Gaussian peak to 10, the standard deviation to 0.9, and
located the center of the distribution at the location of each
transmitter. Note that the location of the TX is in continuous
domain and usually not at the center of the grid cell.

C. sen2peak: Image-to-Image Translation Model
At a high-level, we use a deep and spatial neural network,

in particular a CNN, to learn the approximation function
that maps the input image (of sensor readings) to the target
image (of Gaussian distributions for TX locations). We refer
to this as the image-to-image translation model. Our approach
is inspired by the recent work [12] that frames a different
wireless localization problem as an image-to-image translation
problem. We incorporate the idea into our multiple transmitter
localization problem and utilize recent advances in the com-
puter vision area. Encoder-decoder based CNN models like U-
Net [13] with down-sampling and up-sampling convolutional
layers have been successful in effectively learning image-
to-image translation functions. However, in our setting, we
observe that the usage of down-sampling layers (such as max-
pooling) degrades the performance of the model, especially in
the case when transmitters may be close to each other wherein
the model is unable to distinguish the near-by transmitters and
generate a single large distribution in the target image. To
circumvent this, we avoid using any down-sampling layers in
our model and redesign the image-to-image translation model
as described below.
Our sen2peak Model. We refer to our image-to-image
translation CNN model as sen2peak, as it translates sensors’
readings to ”peaks” with Guassian distributions corresponding
to transmitter locations. It has four 1 convolutional layers, as
shown in Fig. 3(a). We use an input size of 100x100. The
number of convolutional filters are varying for different layers,
with up to 32 in one of the layers. We tried doubling the
filter numbers at each layer, but it doesn’t lead to significant
improvement (it does yield a lower error, but the target image
doesn’t improve significantly to impact the second step of our
architecture). We use a kernel size of 5x5, a stride of 1, and a
padding of 2. This ensures that the dimensions don’t decrease
and all the pixels are treated uniformly, including the ones
at the edge of the image. With the above four convolutional
layers, the receptive field [14] of each neuron in the output
layer is 17x17. Normalization layers can improve the learning
process. We chose group normalization [15] and put it after the

1We observe that a four layer lightweight and symmetric sen2peak model
produces good results and adding more layers gives marginal improvement.

first three convolutional layers. We compared group and batch
normalization [16] methods in our context, and observed better
performance with the group normalization. For the activation
layers, we select rectified linear unit (ReLU) and put it after
the group normalization layers.

The Loss Function. Our inputs (X) and targets (Y) are im-
ages. We use L2 loss function which computes the mean
squared error aggregated over individual pixels. More for-
mally, our loss function is defined as:

1

N

N∑
i

||sen2peak(Xi)− Yi||2 (1)

where N is the number of samples used in computing the loss,
|| · ||2 is L2 loss function, Xi and Yi are the ith sample’s input
and target images respectively, and sen2peak(Xi) is the
predicted target image corresponding to the input Xi. During
training, we use Adam [17] as the optimizer that minimizes
the loss function. We set the learning rate to 0.001 and number
of epochs to 20 and the model converges well.

IV. Step 2: TX Locations’ Distributions to Precise
Locations

In this section, we present the second step of our overall
localization approach. We refer to this step as the peak
detection step, as the goal is to detect the peaks within the
Gaussian distributions in the input image (which is also the
output image of the first step). The first step outputs an
image that has multiple distributions (presumably, Gaussian),
whose peaks need to be interpreted as precise locations of
the transmitters/intruders. As, our end goal is to determine
the precise locations of the present transmitters, we develop
techniques to detect peaks within the output image of the first
step. We propose two different strategies for the peak-detection
task. The first strategy is a straightforward peak detection
algorithm based on finding local maximal values, while the
second strategy is based on framing the problem as an object
detection task; for the second strategy, we utilize a widely used
state-of-the-art computer vision model called YOLOv3 [11].

A. Simple Peak Detection Method: simplePeak
The simple and straight forward peak detection method is

to search for pixels with locally maximal values, based on pre-
determined threshold values. In particular, we use thresholds
for peak value and the radius of the distribution (i.e., the
range of pixels with non-zero values around a peak). More
specifically, we characterize a pixel as a peak if its value is
more than the peak threshold (we choose 2) value and if its
value is maximum among pixels within the radius threshold
(we choose 3). The above approach only yields a pixel as
the peak, which implicitly assigns the center of the area
corresponding to the pixel to the peak/transmitter location.
However, in practice, a peak may represent a large enough area
that we may wish to localize the transmitter more precisely
within the grid cell corresponding to the pixel representing the
peak. We achieve this (i.e., localizing transmitters precisely

Fig. 4. Our YOLOv3-cust. The two major customizations are: (i) Use
only the last YOLO layer that detects small size objects, and (ii) change the
rectangle anchors to square anchors.

within the grid cell, rather than just assume them to be at the
cell’s center) by computing a weighted average of the peak
pixel’s coordinate and the peak’s neighbor pixels’ coordinates.
The weights are the pixel value themselves. With the above
improvement, simplePeak returns a list of locations in
the continuous domain for the detected transmitters. We use
DeepMTL-peak to denote the architecture consisting of
sen2peak and simplePeak.

B. CNN Object Detection Method: YOLOv3-cust
The simple hand-crafted method described in the previous

subsection performs reasonable well in most cases in our
simulations. However, it’s key drawback is that it needs appro-
priate threshold values that may vary from case to case; such
thresholds can be difficult to determine, especially since the
input images (with distributions) are not expected to be perfect
as they are themselves output of a learning model. Inaccurate
threshold values can lead to false alarms and misses. Also, the
previous method is not sufficiently accurate at the sub-pixel
level, where each pixel may represent a large area such as 10m
by 10m or even 100m x 100m. Thus, we propose a CNN-based
learning method that overcomes the above shortcomings.

We frame this problem as an object detection task where
the objective is to detect and localize known objects in a
given image. We observe that our second-step peak detection
problem is essentially an object detection problem where the
“object” to detect is a “peak”. Thus, we turn the MTL problem
of localizing multiple transmitters into detecting peaks in
the images output by sen2peak model. For object/peak
detection, we design YOLOv3-cust, our customized version
of YOLOv3 [11]. Fig. 5 is a zoom-in of localizing two close
by transmitters (peaks) in Fig. 3 (b).
Peak Detection Using YOLOv3-cust. Object detectors are
usually comprised of two parts: (i) a backbone which is usually
pre-trained on ImageNet, and (ii) a front part (head), which is
used to predict bounding boxes of objects, probability of an
object present, and the object class. For the front part, object
detectors are usually classified into two categories, i.e., one-
stage detectors such as the YOLO [18] series, and two-stage
detectors such as the R-CNN [19] series. We choose the one-
stage YOLO series because of its computational efficiency,

low latency, high popularity and available ways to customize
it for our specific context. We refer to the customized version
as YOLOv3-cust, see Fig. 4. Implementing a 106-layer deep
neural network with a complex design from scratch is out of
scope of our work. Thus, we use a publicly available source
repository [20] and made customization on top of it. We refer
to the architecture that uses sen2peak and YOLOv3-cust
in sequence as DeepMTL, our key product. In addition, we
also use sen2peak in combination with the uncustomized
original YOLOv3, and refer to it as DeepMTL-yolo (we
still change the class number to 1).

Customization of YOLOv3. Overall, we incorporated four
customization to YOLOv3, of which two are significant and
the other two are relatively minor. See Table I. YOLOv3
is designed to be a general object detector that can detect
objects of various sizes, shapes, and classes within input
images of various sizes. However, for our context, we can
take advantage of the special nature of our context. E.g., the
input image (the output of sen2peak) dimension is fixed at
100x100 pixels. Also, the objects/peaks to be detected in the
image are relatively small objects, and usually can be bounded
by a square. Moreover, there is only one class of objects.
Based on the above observations, we make changes to the
original YOLOv3 that both decrease the model complexity
and improve its performance.

Table I. Differences between the original YOLOv3 and our YOLOv3-cust.

YOLOv3 YOLOv3-cust

Has three YOLO layers at
13x13, 26x26, and 52x52 for
detection

Only use the last 52x52 YOLO
layer for detection (skip the
first two YOLO layers)

Has 3 different rectangle an-
chors for each YOLO layer

Has 3 square anchors

Every 10 batches, randomly
chooses a new input image di-
mension size

Don’t randomly choose new
input dimension size

Has 80 different categories of
object class

Only has one category for the
peak class

Customization Details. The first and second changes presented
in Table I are major changes and we elaborate on them in
the following paragraphs. Making prediction at three different
scales is one of the highlights of YOLOv3 and an improvement
comparing to the previous version YOLOv2 which was prone
to missing at detecting small objects. As shown in Fig. 4, the
coarse-grain 13x13 YOLO layer-1 is designed for detecting
large size objects, the 26x26 YOLO layer-2 is designed for
detecting middle-sized objects, and the fine-grained 52x52
YOLO layer-3 is designed for detecting small-sized objects.
Since the peaks in our translated images are always small
objects, we only use the last 52x52 YOLO detection layer
(and skip the first two YOLO layers). As shown in Fig. 4,
by “skipping” the two YOLO layers means that we do not
use them in computing the overall loss function and their
outputs are not used in predicting the bounding boxes. In our
customized YOLOv3-cust, the only YOLO layer predicts
8112 bounding boxes, since it has a dimension of 52x52 and
each cell results in prediction of 3 bounding boxes; this is

Fig. 5. A zoom-in of two close peaks in Fig. 3(b), to show a clearer
understanding of the mechanisms in sen2peak and YOLOv3-cust.

in contrast to the original YOLOv3, which predicts 10647
bounding boxes (3× (13×13+26×26+52×52) = 10647).

The anchor box is one of the most important hyperparame-
ters of YOLOv3 that can be tuned to improve its performance
on a given dataset. The original YOLO’s anchor boxes are
10x13, 16x30, and 33x23 (for the input image of size 416x416
pixels), which are essentially bounding boxes of a rectangular
shape. These original YOLOv3 anchors were designed for
the Microsoft COCO [21] data set, and were chosen since
they best describe the dimensions of the real world objects
in the MS COCO data set. In our context, since the peaks
are generally squares—we use the anchor boxes to be 15x15,
25x25, and 35x35.

Training Dataset. The label for an object is a 5 values tuple
(class, x, y, width, height), where class is always the same,
x and y are the location coordinates of the transmitter, width
and height determine the size and shape of the object—which
we consistently set to be 5 each to signify a 5x5 square. Recall
that the size of the first step’s sen2peak output image (also
the input to the second step) is 100x100; we resize the image
to 416x416 and make three copies of it to yield a 3x416x416
3D matrix, so that we can feed this data directly into the
YOLOv3-cust model.

V. Evaluation
To evaluate the performance of our proposed techniques, we

conduct large-scale simulations over two settings based on two
different propagation models. In particular, we consider log-
distance based propagation model and the Longley-Rice model
obtained from SPLAT! [22]. We evaluate various algorithms,
using multiple performance metrics as described below.

Performance Metrics. We use the following metrics to eval-
uate the localization algorithms.

1) Localization Error (Lerr)
2) Miss rate (Mr)
3) False Alarm rate (Fr)

Given a multi-transmitter localization solution, we first com-
pute the Lerr as the minimum-cost matching in the bi-partite
graph over the ground-truth and the solution’s locations, where
the cost of each edge in the graph is the Euclidean distance
between the matched ground-truth node location and solution’s
node location. We use a simple greedy algorithm to compute
the min-cost matching. The unmatched nodes are regarded as
false alarms or misses. We put an upper threshold on the cost
of an eligible match. E.g., if there are 4 intruders in reality,

but the algorithm predicts 6 intruders then it is said to incur 0
misses and 2 false alarms, so the Mr is 0 and the Fr is 2/6. If
it predicts 3 intruders then it incurs 1 miss and 0 false alarms,
so the Mr is 1/4 and the Fr is 0. In the plots, we stack the miss
rate and false alarm rate to reflect the overall performance.

Algorithms Compared. We implement2 and compare six
algorithms in two stages. In stage one, we compare three ver-
sions of our techniques, viz., DeepMTL, DeepMTL-yolo and
DeepMTL-peak. Recall that DeepMTL, DeepMTL-yolo,
and DeepMTL-peak use sen2peak in the first step,
and YOLOv3-cust, original YOLOv3, and simplePeak
respectively in the second step. In the first stage of
our evaluations, we will show that DeepMTL outperforms
DeepMTL-yolo and DeepMTL-peak in almost all per-
formance metrics. Thus, in the second stage, we only com-
pare DeepMTL with schemes from three prior works, viz.,
SPLOT [4], DeepTxFinder [6], and MAP∗ [5] and show
that DeepMTL outperforms the prior works.

Training and Testing Dataset. We consider an area3 of 1km×
1km, and use grid cells (pixels) of 10m× 10m, so the grid is
100x100. The transmitters may be deployed anywhere within
a cell (i.e., their location is in the continuous domain), while
the sensors are deployed at the centers of the grid cells. For
each instance (training or test sample), the said number of
sensors and transmitters arew deployed in the field randomly.
For each of the two settings (propagation models described
below), we create a 100,000 sample training dataset to train
our models, and create another 20,000 sample testing dataset
to evaluate the trained model.

We will evaluate the performance of various techniques for
varying number of transmitters/intruders and sensor density.
When we vary a specific parameter, the other parameter is set
to its default value; the number of transmitters varies from
1 to 10 and the default value is 5; the sensor density varies
from 2% to 10% and the default value is 6% (600 sensors in
a 100x100 grid). When not mentioned, the default values are
used. The transmitter power varies from 0 to 5 dBm and is
randomly picked. To minimize overfitting, the training dataset
and testing dataset have sensors placed at completely different
locations.

We train the DeepMTL model using the 100,000 sam-
ple dataset. To train DeepTxFinder [6], we partition the
100,000 sample training dataset into 10 datasets based on the
number of transmitters in the samples which varies from 1 to
10. These 10 datasets are used to train the 10 “localization”
CNN models in DeepTxFinder, and the full dataset of
100,000 samples is used to train the DeepTxFinder model
that determines the number of transmitters. For the MAP∗

scheme [5], we assume availability of all required probability
distributions. We note that using a simple cost model (number
of samples need to be gathered), the overall training cost
for MAP∗ is an order of magnitude higher than DeepMTL

2Source code at: https://github.com/caitaozhan/deeplearning-localization.
3To deal with areas of larger than 1 square kilometers, a tiling method

similar to the one in [6] can be used. Tiling is not the focus of this work.

and DeepTxFinder. Lastly, SPLOT [4] doesn’t require any
training.

Fig. 6. Cumulative probability of localization error of DeepMTL,
DeepMTL-yolo and DeepMTL-peak, for the special case of single trans-
mitter localization with 6% sensor density.

Fig. 7. (a) Localization error and (b) miss and false alarm rates, of DeepMTL,
DeepMTL-yolo and DeepMTL-peak variants for varying number of
transmitters in log-distance dataset/propagation model.

Fig. 8. (a) Localization error and (b) miss and false alarm rates, of DeepMTL,
DeepMTL-yolo and DeepMTL-peak variants for varying sensor density
in log-distance dataset/propagation model.

Two Propagation Models and Settings. The sensor readings
(i.e. the dataset) are simulated based on a propagation model.
To demonstrate the generality of our techniques, we consider
two propagation models as described below.
Log-Distance Propagation Model and Setting. Log-Distance
propagation model is a generic model that extends Friis Free
space model which is used to predict the path loss for a wide
range of environments. As per this model, the path loss (in

https://github.com/caitaozhan/deeplearning-localization

Table II. Compare Running Time (ms).

Intru. DeepMTL DeepMTL-yolo DeepMTL-peak
1 18.0 18.0 1.3
3 18.6 18.3 1.4
5 18.9 19.2 1.6
7 19.4 19.6 1.8

10 20.6 20.5 2.3

Fig. 9. Localization error of DeepMTL, MAP∗, SPLOT, and DeepTxFinder
for varying number of transmitters in the log-distance dataset.

dB) between two points x and y at a distance d is given
by: PLd = 10α log d + X , where α (we use 3.5) is the
path-loss exponent and X represents the shadowing effect
of the propagation channel which can be represented by a
zero-mean Gaussian distribution with a certain (we use 1)
standard deviation. Power received (in dBm) at point y due
to a transmitter at point x with a transmit power of Px is
thus: Px − PLd. Power received at point y due to multiple
sources is assumed to be just an aggregate of the powers (in
linear) received from each of the sources.

Log-Distance Propagation Model and Setting. This is a com-
plex model of wireless propagation based on many parameters
including locations, terrain data, obstructions, soil conditions,
etc. We use SPLAT! [22] to generate path-loss values. SPLAT!
is an open-source software implementing the Longley-Rice
[23] Irregular Terrain With Obstruction Model (ITWOM)
model. We consider an area of 1km × 1km in our state and
use the 600 MHz band to generate path losses.

A. DeepMTL vs. DeepMTL-yolo vs. DeepMTL-peak
In this subsection, we compare the three variants

of our technique, viz., DeepMTL, DeepMTL-yolo, and
DeepMTL-peak. For simplicity, we only show plots for
the log-distance propagation model setting in this subsection
(we observed similar performance trends for the Longley-Rice
propagation model too).

Performance Results. In Fig. 6, we plot the cumulative density
function (CDF) of the localization error, for the simple case of
a single transmitter. We observe that DeepMTL outperforms
the other variants, as it yields higher cumulative probability
for lower range of errors. In addition, we evaluate the three
variants for varying number of transmitters (Fig. 7) and
sensor density (Fig. 8), and evaluate the localization error as
well as the false and miss rates. We observe that DeepMTL

Fig. 10. Miss and false alarm rates of DeepMTL, MAP∗, SPLOT, and
DeepTxFinder for varying number of transmitters in the log-distance
dataset.

Fig. 11. (a) Localization error, and (b) miss and false alarm rates, of
DeepMTL, MAP∗, SPLOT, and DeepTxFinder for varying sensor densities
in the log-distance dataset.

consistently outperforms the other two variants across all plots
and performance metrics. As expected, the performance of all
algorithms degrades with increase in number of transmitters
(in terms of false alarms and miss rates) or with decrease in
sensor density. In general, the localization error of DeepMTL
is around 15-30% lower than the other variants. Impressively,
the total cardinality error (i.e., false alarms plus miss rates) is
only 1% or less for the DeepMTL technique, in most cases.

Running Time Comparison. For the running time comparison
of the variants, see Table II. Our hardware is an Intel i7-
8700 CPU and a Nvidia RTX 2070 GPU. We observe that,
as expected, DeepMTL and DeepMTL-yolo which use a
sophisticated object-detection platform do incur higher latency
(around 20 milliseconds) than DeepMTL-peak (around 2
milliseconds). As our key performance criteria is accuracy
and the run time of DeepMTL is still quite low, we choose
DeepMTL for comparison with the prior works in §V-B.

Localizing Transmitters Close By. Localizing two or more
transmitters close by is a hard part of the MTL problem. Fig. 5
gives an example when an advance object detection algorithm
will work while a simple local maximal peak detection might
not. Fig. 5 shows DeepMTL can successfully localize two
transmitters as close as 3 pixels apart. When a pixel represents
a 10m x 10m area, then it is 30 meters apart. If a pixel
represents a smaller area, such as 1m x 1m, it has the potential
to localize two transmitters as close as 3 meters apart.

Table III. Compare Running Time (s)

Intru. DeepMTL MAP∗ SPLOT DeepTxFinder
1 0.0180 8.78 1.53 0.0015
3 0.0186 15.1 1.79 0.0016
5 0.0189 19.3 2.06 0.0017
7 0.0194 24.1 2.32 0.0019

10 0.0206 28.5 2.72 0.0022

Fig. 12. Localization error of DeepMTL, MAP∗, DeepTxFinder and
SPLOT for varying number of transmitters in the SPLAT! Dataset.

B. DeepMTL vs. Prior Works

In this subsection, we compare DeepMTL with SPLOT,
MAP∗, DeepTxFinder in both log-distance (Fig. 9, 10, 11)
and SPLAT (Fig. 12, 13, 14) propagation models and thus,
datasets. We observe similar performance trends for both
datasets, i.e., DeepMTL significantly outperforms the other
approaches by a large margin (in many cases, by more than
50% in localization errors, false alarms and miss rates). For all
techniques, as expected, the performance is generally worse in
the SPLAT dataset compared to the log-distance dataset.

Varying Number of Transmitters. Fig. 9 and Fig. 12 show the
localization error with varying number of transmitters, in the
two datasets. We see that DeepMTL has a mean localization
error of only 2 to 2.5 meters (roughly, 1/4-th of the side length
of a pixel/grid cell) in the log-distance dataset and about 5 to 6
meters in the SPLAT dataset. In comparison, the localization
errors of MAP∗, SPLOT, DeepTxFinder are two to three
times, eight to nine times, and few tens of times respectively
more than that of DeepMTL. Fig. 10 and Fig. 13 show the
miss and false alarm rates in the two datasets. We observe
that DeepMTL’s summation of miss and false alarm rate is
only 1% even at 10 transmitters in the log-distance dataset,
and about 4% for the case of SPLAT! dataset. In comparison,
the summation of miss and false alarm rates for other schemes
is at least 6% and 10% respectively for the two datasets, when
there are 10 transmitters.

Varying Sensor Density. Fig. 11 and Fig. 14 plot the per-
formance of various algorithms for varying sensor density
in the two datasets. For very low sensor density of 2%, all
algorithms perform badly (in comparison with higher sensor
densities), but DeepMTL still performs the best. For higher
sensor densities, we observe a similar performance trend as
above—i.e., DeepMTL easily outperforms the other schemes
by a large margin.

Fig. 13. Miss and false alarm rates of DeepMTL, MAP∗, SPLOT, and
DeepTxFinder for varying number of transmitters in the SPLAT! Dataset.

Fig. 14. (a) Localization error, and (b) miss and false alarm rates, of
DeepMTL, MAP∗, SPLOT, and DeepTxFinder for varying sensor densities
in the SPLAT! Dataset.

Running Times. The run time of DeepMTL is orders of
magnitude faster than MAP∗ and SPLOT (Table III), but an
order of magnitude slower than DeepTxFinder (due to the
deep YOLOv3-cust taking up over 90% of the run time).

Summary and Analysis. In summary, our approach signifi-
cantly outperforms the other approaches in all the accuracy
performance metrics, as well as in terms of latency. In par-
ticular, our approach also significantly outperforms the other
CNN-based approach DeepTxFinder. The main reason for
DeepTxFinder’s inferior performance is its inability to
accurately predict the number of TXs—which forms a funda-
mental component of their technique. In contrast, DeepMTL is
able to circumvent explicit pre-prediction of number of trans-
mitters by using a well-developed object-detection technique
which works well for multiple objects especially in our context
of simple objects.

VI. Related Work

Spectrum sensing is usually being realized by some dis-
tributed crowdsourced low-cost sensors. Electrosense [24] and
its follow up work Skysense [25] are typical work of spectrum
sensing. In this crowdsourced sensing paradigm [7], sensors
collect I/Q samples (in-phase and quadrature components of
raw signals) and compute PSD (power spectral density), which
is RSSI. Crowdsourced low-cost sensors do not have the
capability to collect TOA (time of arrival) or AOA (angle

of arrival) data because they require more expensive hard-
ware. Spectrum sensing platforms serve as the foundation
of spectrum applications, and transmitter localization is one
of the main applications. Other applications include signal
classification [26], spectrum anomaly detection [27], sensor
selection [28], etc.
Transmitter localization. Localization of an intruder in a
field using sensor observations has been widely studied, but
most of the works have focused on localization of a single
intruder [29], [30]. In general, to localize multiple intruders,
the main challenge comes from the need to “separate” powers
at the sensors [31], i.e., to divide the total received power
into power received from individual intruders. Blind source
separation is a very challenging problem; only very limited
settings allow for known techniques using sophisticated re-
ceivers [27], [32]. We note that (indoor) localization of a
device [33] based on signals received from multiple reference
points (e.g, WiFi access points) is a quite different problem
(see [34] for a recent survey), as the signals from reference
points remain separate, and localization or tracking of multiple
devices can be done independently. Recent works on multi-
target localization/tracking such as [35] are different in the
way that targets are passive, instead of active transmitters in
the MTL problem. Among other related works, [36] addresses
the challenge of handling time-skewed sensors observations in
the MTL problem.
Deep learning for localization. Several recent works have
harnessed the power of deep learning in the general topic of
localization. E.g., DLoc in [12] designs a CNN that local-
izes a single target in indoor environment using WiFi CSI
data, MonoDCell in [37] designs an LSTM that localizes a
single target in indoor environment using cellular RSSI data,
and DeepTxFinder in [6] uses CNN to address the same
MTL problem using RSSI data in this paper.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have designed and developed a novel deep-
learning (CNN) based scheme for the multiple transmitter lo-
calization problem. Our developed technique outperforms prior
approaches by a significant margin in all performance metrics.
For future work, we would like to extend our technique to
estimate powers of the transmitters, and develop techniques
to reduce training cost and optimize sensor deployment. We
would also like to develop techniques which will allow the
model to be used across geographical areas, perhaps, with
some minimal training specific to an area.

VIII. ACKNOWLEDGEMENTS

This work is supported by NSF grants CNS-1642965 and
CNS-1815306. The authors would like to thank the anonymous
reviewers as well as Krishna Patel.

REFERENCES

[1] J. G. Andrews et al., “What will 5g be?” IEEE Journal on Selected
Areas in Communications, 2014.

[2] “Electromagnetic spectrum superiority strategy,” US Department of
Defence, Tech. Rep., 2020.

[3] H. Kour, R. K. Jha, and S. Jain, “A comprehensive survey on spectrum
sharing: Architecture, energy efficiency and security issues,” Journal of
Network and Computer Applications, 2018.

[4] M. Khaledi et al., “Simultaneous power-based localization of transmit-
ters for crowdsourced spectrum monitoring,” in MobiCom. ACM, 2017.

[5] C. Zhan, H. Gupta, A. Bhattacharya et al., “Efficient localization of
multiple intruders for shared spectrum system,” in IPSN, 2020.

[6] A. Zubow et al., “Deeptxfinder: Multiple transmitter localization by deep
learning in crowdsourced spectrum sensing,” in ICCCN, 2020.

[7] A. Chakraborty et al., “Specsense: Crowdsensing for efficient querying
of spectrum occupancy,” in INFOCOM, 2017.

[8] C. W. Kim et al., “Design and implementation of an end-to-end
architecture for 3.5 ghz shared spectrum,” in IEEE DySPAN, 2015.

[9] L. Hartung and M. Milind, “Policy driven multi-band spectrum aggre-
gation for ultra-broadband wireless networks,” in DySPAN, Sep. 2015.

[10] J. K. Nelson, M. R. Gupta et al., “A quasi em method for estimating
multiple transmitter locations,” IEEE Signal Processing Letters, 2009.

[11] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
CoRR, vol. abs/1804.02767, 2018.

[12] R. Ayyalasomayajula, A. Arun et al., “Deep learning based wireless
localization for indoor navigation,” in MobiCom, 2020.

[13] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in MICCAI 2015, 2015.

[14] W. Luo, Y. Li, R. Urtasun, and R. S. Zemel, “Understanding the effective
receptive field in deep convolutional neural networks,” CoRR, 2017.

[15] Y. Wu and K. He, “Group normalization,” CoRR, 2018. [Online].
Available: http://arxiv.org/abs/1803.08494

[16] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” CoRR, 2015.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[18] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in CVPR, 2016.

[19] R. Girshick et al., “Rich feature hierarchies for accurate object detection
and semantic segmentation,” in CVPR, 2014.

[20] E. Linder-Norén, Open source YOLOv3 implementation, 2019. [Online].
Available: https://github.com/eriklindernoren/PyTorch-YOLOv3

[21] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick et al.,
“Microsoft COCO: common objects in context,” 2014.

[22] J. A. Magliacane, “Splat! a terrestrial rf path analysis application for
linux/unix,” Downloaded at https://www.qsl.net/kd2bd/splat.html, 2008.

[23] K. Chamberlin et al., “An evaluation of longley-rice and gtd propagation
models,” IEEE Transactions on Antennas and Propagation, 1982.

[24] S. Rajendran, R. Calvo-Palomino, D. Giustiniano et al., “Electrosense:
Open and big spectrum data,” IEEE Communications Magazine, 2018.

[25] B. Reynders, F. Minucci, E. Perenda et al., “Skysense: Terrestrial and
aerial spectrum use analysed using lightweight sensing technology with
weather balloons,” in MobiSys, 2020.

[26] S. Rajendran et al., “Deep learning models for wireless signal classifica-
tion with distributed low-cost spectrum sensors,” IEEE TOCCN, 2018.

[27] Z. Li, Z. Xiao, B. Wang, B. Y. Zhao et al., “Scaling deep learning
models for spectrum anomaly detection,” in MobiHoc. ACM, 2019.

[28] A. Bhattacharya, C. Zhan, H. Gupta, S. R. Das et al., “Selection of
sensors for efficient transmitter localization,” in IEEE INFOCOM, 2020.

[29] A. Chakraborty et al., “Spectrum patrolling with crowdsourced spectrum
sensors,” in IEEE Infocom, 2018.

[30] A. Dutta and M. Chiang, ““see something, say something” crowdsourced
enforcement of spectrum policies,” IEEE TOWC, 2016.

[31] N. Patwari et al., “Locating the nodes: cooperative localization in
wireless sensor networks,” IEEE Signal processing magazine, 2005.

[32] M. Schmidt et al., “Wireless interference identification with convolu-
tional neural networks,” in INDIN, 2017.

[33] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based
user location and tracking system,” in IEEE INFOCOM, 2000.

[34] F. Zafari, A. Gkelias et al., “A survey of indoor localization systems
and technologies,” IEEE Communications Surveys Tutorials, 2019.

[35] C. Karanam et al., “Tracking from one side – multi-person passive
tracking with wifi magnitude measurements,” in ACM/IEEE IPSN, 2019.

[36] M. Ghaderibaneh, M. Dasari, and H. Gupta, “Multiple transmitter
localization under time-skewed observations,” in DySPAN, 2019.

[37] H. Rizk and M. Youssef, “Monodcell: A ubiquitous and low-overhead
deep learning-based indoor localization with limited cellular informa-
tion,” in SIGSPATIAL, 2019.

http://arxiv.org/abs/1803.08494
https://github.com/eriklindernoren/PyTorch-YOLOv3
https://www.qsl.net/kd2bd/splat.html

	Introduction
	Background, Problem and Methodology
	Step 1: Sensor Readings to TX Location Distributions
	Input Image Representing Sensors' Readings
	Output Image with TX locations' Distribution
	sen2peak: Image-to-Image Translation Model

	Step 2: TX Locations' Distributions to Precise Locations
	Simple Peak Detection Method: simplePeak
	CNN Object Detection Method: YOLOv3-cust

	Evaluation
	DeepMTL vs. DeepMTL-yolo vs. DeepMTL-peak
	DeepMTL vs. Prior Works

	Related Work
	conclusion and future work
	Acknowledgements
	References

