
Shape Formation in Games: a Probability-based
Evolutionary Approach

Caitao Zhan, Changhe Li∗

School of Computer Science, China University of Geosciences (Wuhan), China

caitaozhan@163.com, changhe.lw@gmail.com

Abstract—Shape formation for a group of agents is crucial
in many strategy games as it brings collective payoff through
cooperations. Finding a good formation for a group of agents in
games is considered as a combinatorial optimization problem
in this paper. To address this issue, this paper proposes a
novel and simple evolutionary algorithm based on a probability
learning matrix, which is the foundation of a formation learning
and discovery mechanism. Experimental results on several test
problems show that the proposed algorithm works well in
comparison with another peer algorithm.

Keywords-Shape formation, probability learning, evolutionary
computation.

I. INTRODUCTION

Artificial intelligence (AI) has been widely used in games,

e.g., game of computer go and combat games, to generate

human like behaviors in non-player control. Also, AI can help

players finish some complex tasks such as pathfinding and

controlling a group of agents in games. Agents can be different

figures in different games: e.g., tanks and fighter planes in war

games and heros in multi-player online battle arena games like

League of Legends etc. In real-world wars, infantry, cavalry,

and vehicles come into different formations, e.g., column, line,

square, wedge, and vee etc., in different attack or defence

circumstances.

In cooperative game theory, the formation focuses on which

coalition to form in order to result in collective payoff. In

this paper, a formation of a group of agents is defined as a

special shape for agents. A game in this paper is a combat

game that involves two teams of agents. A good formation (F)

should gain collective payoff and follow two principles: 1) the

concentration of superior forces of F on attacking weak parts

of enemy; 2) the avoidance of superior forces of enemy from

attacking weak part of F itself. The problem is a combinatorial

optimization problem and is considered NP-hard: given a grid

map and a formation of enemy agents, the objective is to find

the best formation for a group of agents F that maximize the

values of a function followed the two principles mentioned

above.

Evolutionary computation (EC) is the science of designing

algorithms based on Darwinian principles of natural selection.

It is a universal problem solver that obtains a optimal/near-

optimal solution to many different types of optimization

∗ The author for correspondence.

problems. In recent years, many new algorithms have been

introduced in the realm of EC but as stated in [4] some of

them are unnecessarily complicated to artificially mimic the

natural process or to create novelty by mixing up ideas of

existing algorithms.

Estimation of distribution algorithms (EDAs) [5] are in-

troduced by the motivation of creating an new type of EC

algorithm that is easier to predict the movements of the

population in the search space as well as to avoiding so many

parameters [1]. EDAs are stochastic optimization algorithms

that reproduce a new generation not by traditional crossover

nor mutation operators, but by explicitly sampling from a

probability distribution estimated from promising candidate

individuals. Probabilistic models vary from a simple vector to

complicated trees and networks. Probabilistic graphic models

are widely applied to EDAs[3], because they are powerful in

expressing the interrelationships between different variables

through the joint probability distribution.

In this paper, we design a novel and simple metaheuristic

evolutionary algorithm based on a probability matrix with a

formation learning and discovery mechanism. The proposed

algorithm is shown effective through experimental studies. The

formation learning/discovery mechanism learns a probability

distribution to identify good agents. The paper is organized

as follows. Sect. II describes the proposed algorithm in detail.

Sect. IV. shows experimental results and discussions. Finally,

conclusions are presented in Sect. V.

II. PROBABILITY-BASED EVOLUTIONARY ALGORITHM

In this section, the probabilistic learning mechanism is im-

plemented to a new formation construction algorithm, namely

probability-based evolutionary algorithm(PEA), to solve shape

formation problems.

A. Game Map

a) line formation b) red VS. black formation

Fig. 1. Formation examples

2016 12th International Conference on Computational Intelligence and Security

978-1-5090-4840-3/16 $31.00 © 2016 IEEE

DOI 10.1109/CIS.2016.125

518

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on February 21,2022 at 02:39:07 UTC from IEEE Xplore. Restrictions apply.

Fig.1 shows a game map, which is constructed by a grid

where each cross point in the grid is represented by a two

dimensional integer coordinate: (i, j). The left bottom corner

is the origin of the map. A colored point stands for an agent

and it can only be placed on a cross point. A team of agents

are homogeneous: all have the same attacking ability distance

in all directions and the same color. Only one agent is allowed

to be placed on one cross point in one team. Different teams

with different colors all share a same attacking ability distance.

A team forms a formation in a game map, e.g., the line shape

formation in Fig.1-a.

B. Fitness Evaluation

Based on the two principles for a good formation mentioned

in Sect. I, we design a simple fitness evaluation method. The

fitness value for a formation of a team is the number of

agents that can attack the opponent team minus the number of

agents being attacked by its opponent team. Take Fig.1-b as

an example. There are ten black agents that can attack any one

of the red agents, but only two red agents that can attack any

one of black agents (the attacking ability distance is two, i.e.,

two blocks in a grid). So fitness value of the black formation

is eight (10-2) and fitness value for red formation is -8 (2-10).

C. Formation Learning

In this paper, a population contains a set of individu-

als, which are different shape formations in this scenario.

Therefore an individual/formation comprises a set of integer

coordinates, which represent the positions of agents. This

paper introduces a probability matrix, inspired by the idea

from [7], to predict or learn the probability of positions of

agents be to located in a game map.

An element PMij in probability matrix (PM) reflects the

quality of a coordinate (i, j). A higher value PMij simply

indicates that more individuals having an agent at coordinate

(i, j), vis versa for a lower value of PMij . Note that at the

very beginning, the population is randomly initialized so that

every coordinate should have a similar value with each other.

A probability matrix PM reflects a probability distribution

with each element PMij indicating the probability of agents

selecting an integer coordinate (i, j) of a grid.

PM is also able to reflect the learning process as the

evolutionary process goes on. When population evolves, they

usually improves. What underlays this improvement are two

types of knowledge: 1) The number of good agents increases in

the population (good agents in this paper means agents which

belong to the global/near-global optima); 2) The frequency

of the appearance of a particular good agent increases in the

population.

During the search, we simply count the frequency appear-

ance of an agent (coordinate) in a population. Based on the

knowledge above, we assume that as the population improves,

the higher frequency an agent has, the better an agent is.

So when reproducing a next generation, such good agents

should have higher probabilities for survival. Moreover, given

the knowledge that a formation with a higher fitness value

normally contains more good agents than a formation with

lower fitness value, agents in good individuals are paid more

attention than agents in poor individuals. To implement this,

we assign each individual a weight w in a population, and

the higher the fitness value, the higher the weight. Weight is

calculated from fitness by two steps:
The first step is to normalize fitness values of all individuals

within [0, 1] as follows:

f
′
(xi) =

f(xi)− f(xworst) + 1

f(xbest)− f(xworst) + 1
, (1)

where f(xi), f(x
best), f(xworst) are the original fitness value

of xi, the best individual, and the worst individual respectively,

1 ≤ i ≤ PS. The original fitness value is computed by

Algorithm 1.
The second step is to calculate the weights of individuals

through a sigmoid function as below:

wi =
1

1 + e−f ′ (xi)
(2)

The higher the fitness an individual has, the higher the weight

it has. A set of preliminary experimental results show that the

sigmoid function works well.
Finally, we compute each element PMij of PM as follows:

PMij =
∑

(wk · ok) + ε, (3)

where oi = 1 if exists an agent ∈ formationk that locates

at coordinate (i, j), else oi = 0, k ∈ [1, PS], (i, j) ∈ Grid, ε
is a small number and biases the reproduction toward random

formations (it can thus be regard as a form of mutation). We

assign ε inspired from [6] as follows

ε =
popSize · indiSize
availablePoints

· ratio (4)

where indiSize is the individual size (the number of agents),

availablePoints is the number of cross points in the grid

minus the number of cross points where an agent should not

be located, e.g., cross points where is occupied by rival agents.

ratio is a constant related to the pressure toward randomness

and is set to 0.0002 by default. ε is proportional to the expected

value of PMij , and is designed to be general to different

problems.
The following example illustrates the calculation of PM25

with a population of three individuals on a formation with

ten agents in a 18 × 10 grid as shown in Fig. 1-a. Assume

the red formation as enemy formation, and our objective is to

obtain a certain formation like the black formation in Fig. 1-

b, where black formation is in a superior circumstance (team

black sieges the two right agents of team red with the attacking

ability distance of two). By observing to the population,

position (2,5) appears in all three individuals. According to

Eqs.(3) and (4), PM25 = w1 · 1+w2 · 1+w3 · 1+0 = 1.895.
This probability matrix is a mixture of the matrix in the orig-

inal ACO and EDA: the weight part derives from pheromone

in ants and the matrix is similar to the distribution in EDA.

After randomly initialized, the probability matrix is updated

whenever a formation is improved.

519

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on February 21,2022 at 02:39:07 UTC from IEEE Xplore. Restrictions apply.

f1=0, w1=0.622 f2=-2, w2=0.542 f3=3, w3=0.731

Fig. 2. A population with 3 black individuals, attacking distance=2

D. Formation Discovery

In this subsection we introduce a simple formation discovery

algorithm based on the probability matrix introduced above,

namely probability-based evolutionary algorithm (PEA). The

framework of PEA is presented in Algorithm 2.

Algorithm 1 Probability-based Evolutionary Algorithm

1: Initialize a fixed target formation Ftarget

2: Initialize a population X = [x1, x2, . . . , xps] with PS individuals
3: Create an archive A = X and initialize the probability matrix PM with A
4: while (termination criteria not satisfied) do
5: for (each individual xi) do
6: xi ← Ai

7: Construct a new formation xt based on xi, starting with j ← 0
8: while (xt is not completed) do
9: if (rand() < PL) then

10: xtj ← xij

11: else � get(PM) returns an agent based on the probability matrix
12: xtj ← get(PM)
13: end if
14: if (xij �= xtj) then
15: xij ← xtj

16: if (Evaluate(xi, Ftarget)>Evaluate(Ai, Ftarget)) then
17: Ai ← xi

18: else if (Evaluate(xi, Ftarget)==Evaluate(Ai, Ftarget)) then
19: Ai ← xi with 50% probability
20: end if
21: end if
22: j ← j + 1
23: end while
24: end for
25: Update PM based on population A
26: end while

An archive population (A) is utilized for storing the best

solutions found so far for each individual. We regard this as

a memory population saving each individual’s historical best

solution. In the work flow of the algorithm, a new individual xt

is constructed based on the historical best solution of xi(Ai).

PL is a probability learning parameter ∈ (0, 1), controlling

how many percent of agents in xt is directly derived from xi,

and the rest is selected from PM through some strategy such

as roulette. If xi is updated by the constructed xt, and xi has

a higher fitness than Ai, then update Ai with xi.

III. EXPERIMENTAL STUDIES

In this section, eight set of formation test problems are

shown in Fig. 3. An EDA version named Node Histogram

Based Sampling Algorithm With Template proposed in [6] is

chosen to compare with the performance of PEA due to its

good performance in comparison with other peer EDAs [2].

A. Experimental Setups

We designed eight test problems without the knowledge

of the global optima. Here we explain how the problems

are designed. In Fig. 3, eight test problems are designed:

TABLE I
PERFORMANCE COMPARISON BETWEEN PEA AND NHBSA/WT, WHERE

NUMBERS ARE FITNESS VALUE IN THE WORST CASE, IN THE BEST CASE,
BY MEAN, AND STD STANDS FOR STANDARD DEVIATION. THE HIGHER A

FITNESS VALUE, THE BETTER

Problem
PEA NHBSA/WT

Worst Best Mean STD Worst Best Mean STD
Line10-2 8 8 8 0 8 8 8 0

Random20-4 17 17 17 0 16 17 16.87 0.35
Vee10-2 7 8 7.93 0.25 7 8 7.77 0.43

Symmetry20-2.9 16 16 16 0 15 16 15.97 0.18
Distribute20-5 15 17 16.87 0.43 16 17 16.77 0.43
Diamond50-8 35 41 40.6 1.13 0 41 36.4 7.78
ZigZag50-8 36 37 36.63 0.49 33 41 36.77 2.25

ThreeSquare48-6 32 32 32 0 32 32 32 0

eight red formations represent eight problems in each graph.

Assume black formations are the ones the algorithm obtained,

which start with a random formation scattering across the

game map and gradually evolves into some certain formations

shapes by taking advantages of red team in a battle. A rule of

naming a problem is as follows, for example, name “Line10-2”

consists of three parts: a) “Line” means that the shape of red

formation is a line; b)“10” denotes that the size of a formation

(individual) is ten, c)“2” indicates that the attacking ability

distance of an agent is two. The test problems are designed in

those ways based on real-world military backgrounds.

We set the population size as follows

PS = c
√
IndivudialSize×GridSize (5)

where c is a coefficient. Generally speaking, the larger the

individual size, the more complex the problem is, and thus

need a larger population to search in the search space. Also,

the similar relationship exists with grid size. Therefore we

designed the above equation. Note that grid size could be

reduced based by the knowledge of attacking ability distance:

search space that are out of reach of target(red) formation

could be eliminated. Based on some preliminary tests, in PEA,

c is set to two by default, and c is set to five in NHBSA/WT.

In PEA, an important parameter is PL, which controls

how much percent of agents of an individual learn form

the probability matrix. We set PL to 0.5 by default. In

NHBSA/WT, a selection rate is a crucial parameter which

determines how many individuals in a parent population will

survive. An offspring population is sampled based on the

selected individuals. In this paper, selectRatio is set to 0.8
based on some preliminary experiments. The result in this

paper are averaged over 30 independent runs.

B. Experimental Results and Discussions

Table I shows the result of comparison between our pro-

posed PEA and NHBSA/WT on the eight problems. Figure 4

shows the convergence process of the best solutions of the two

algorithms. From the table, PEA have a better performance on

most problems. Both algorithms achieve the same mean values

on three problems. PEA obtains better mean results than N-

HBSA/WT on four problems. NHBSA/WT outperforms PEA

only on one problem. Figure 4 shows that the convergence

speed of PEA is faster than that of NHBSA/WT at the early

520

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on February 21,2022 at 02:39:07 UTC from IEEE Xplore. Restrictions apply.

Line10-2 Random20-4 Vee10-2 Symmetry20-2.9 Distribute20-5 Diamond50-8 ZigZag50-8 ThreeSquare48-6

Fig. 3. Eight shape formation problems

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 4000 8000 12000 16000

Fi
tn

es
s

Fitness Evaluation, Line10-2

PEA NHBSA/WT

-2
 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 30000 60000 90000 120000

Fi
tn

es
s

Fitness Evaluation, Random20-4

PEA NHBSA/WT

-1
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20000 40000 60000 80000

Fi
tn

es
s

Fitness Evaluation, Vee10-2

PEA NHBSA/WT

-2
 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 20000 40000 60000 80000 100000

Fi
tn

es
s

Fitness Evaluation, Symmetry20-2.9

PEA NHBSA/WT

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 80000 160000 240000 320000

Fi
tn

es
s

Fitness Evaluation, Distribute20-5

PEA NHBSA/WT

-5
 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 300000 600000 900000 1.2x106

Fi
tn

es
s

Fitness Evaluation, Diamond50-8

PEA NHBSA/WT

 0
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40

 0 400000 800000 1.2x106

Fi
tn

es
s

Fitness Evaluation, ZigZag50-8

PEA NHBSA/WT

-10
-5
 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 300000 600000 900000

Fi
tn

es
s

Fitness Evaluation, ThreeSquare48-6

PEA NHBSA/WT

Fig. 4. Compare PEA with NHBSA/WT based on average of 30 experiments

stage on all test problems. PEA achieves better results with less

time than NHBSA/WT on most problems. Another interesting

observation is that NHBSA/WT needs a larger population size

than PEA. This is because NHBSA/WT looses some diversity

every generation when a part of poor individuals are removed,

and thus a large population is needed to compensate for this.

On the contrary, in PEA every individual is remained over

generations until a better solution is found.
Note that, we have not found a better solution for the first

five problems with human power than the results obtained

by the two algorithms. However for the last three problems,

we have observed better solutions. In problems Diamond50-

8, ZigZag50-8, and ThreeSquare48-6, we can get solutions

with fitness values of 42, 42, 34 respectively. However the

algorithms can only obtain the best results with values of

41, 41, and 32. We think that the reason for the failure may

be the lack of local search techniques. More work should

be done like discovering whether exists interdependencies

between agents in a formation. Also, multi-population methods

could be applied to problems like ThreeSquare48-6, where

enemy agents distributes in several separate areas. This is

because multi-population techniques may help to find more

than one shape in such a case.

IV. CONCLUSION

This paper proposes a probability-based evolutionary al-

gorithm that learns through a statistical matrix for solving

shape formation problems. PEA is inspired by the common

characteristics shown during the improvement of a population

for almost all population-based algorithm. The knowledge of

improvement is transformed into a probability matrix. Experi-

ment results show that the proposed algorithm is effective for

solving formation problems and performs better than an EDA

algorithm.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science

Foundation of China under Grants 61673355.

REFERENCES

[1] E. Bengoetxea, “Inexact graph matching using estimation of distribu-
tion algorithms,” Ph.D. dissertation, Ecole Nationale Supérieure des
Télécommunications, Paris, France, Dec 2002.

[2] J. Ceberio, E. Irurozki, A. Mendiburu, and J. A. Lozano, “A review on
estimation of distribution algorithms in permutation-based combinatorial
optimization problems,” Progress in Artificial Intelligence, vol. 1, no. 1,
pp. 103–117, 2012.

[3] P. Larrañaga, H. Karshenas, C. Bielza, and R. Santana, “A review on
probabilistic graphical models in evolutionary computation,” Journal of
Heuristics, vol. 18, no. 5, pp. 795–819, 2012.

[4] Y. Lin, M. Clauss, and M. Middendorf, “Simple probabilistic population
based optimization,” Evolutionary Computation, IEEE Transactions on,
no. 99, pp. 1–1, 2015.

[5] H. Mhlenbein and G. Paa, “From recombination of genes to the estimation
of distributions i. binary parameters.” Springer-Verlag, 1996, pp. 178–
187.

[6] S. Tsutsui, S. Tsutsui, M. Pelikan, M. Pelikan, D. E. Goldberg, and D. E.
Goldberg, “Node histogram vs. edge histogram: A comparison of pmbgas
in permutation domains,” Tech. Rep., 2006.

[7] C. L. Yong Xia, “Memory-based statistical learning for the travelling
salesman problem,” in Evolutionary Computation (CEC), 2016 IEEE
Congress on. IEEE, 2016, accepted.

521

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on February 21,2022 at 02:39:07 UTC from IEEE Xplore. Restrictions apply.

