
Quantum Internet Engineeringuantum
Transactions onIEEE

Received January 20, 2022; revised April 1, 2022; accepted April 4, 2022; date of publication April 19, 2022;
date of current version May 13, 2022.

Digital Object Identifier 10.1109/TQE.2022.3168784

Efficient Quantum Network
Communication Using Optimized
Entanglement Swapping Trees
MOHAMMAD GHADERIBANEH , CAITAO ZHAN, HIMANSHU GUPTA,
AND C. R. RAMAKRISHNAN
Department of Computer Science, Stony Brook University, Stony Brook, NY 11790 USA

Corresponding author: Mohammad Ghaderibaneh (e-mail: mghaderibane@cs.stonybrook.edu).

This work was supported in part by the National Science Foundation under Award FET-2106447 and Award CNS-2128187 and in part
by a Cisco industry grant.

ABSTRACT Quantum network communication is challenging, as the no-cloning theorem in the quantum
regime makes many classical techniques inapplicable; in particular, the direct transmission of qubit states
over long distances is infeasible due to unrecoverable errors. For the long-distance communication of
unknown quantum states, the only viable communication approach (assuming local operations and classical
communications) is the teleportation of quantum states, which requires a prior distribution of the entangled
pairs (EPs) of qubits. The establishment of EPs across remote nodes can incur significant latency due to the
low probability of success of the underlying physical processes. The focus of our work is to develop efficient
techniques that minimize EP generation latency. Prior works have focused on selecting entanglement paths;
in contrast, we select entanglement swapping trees—a more accurate representation of the entanglement
generation structure. We develop a dynamic programming algorithm to select an optimal swapping tree for a
single pair of nodes, under the given capacity and fidelity constraints. For the general setting, we develop an
efficient iterative algorithm to compute a set of swapping trees. We present simulation results, which show
that our solutions outperform the prior approaches by an order of magnitude and are viable for long-distance
entanglement generation.

INDEX TERMS Quantum communications, quantum networks (QNs).

I. INTRODUCTION
Fundamental advances in physical sciences and engineering
have led to the realization of working quantum computers
(QCs) [1], [2]. However, there are significant limitations to
the capacity of individual QC [3]. Quantum networks (QNs)
enable the construction of large, robust, and more capable
quantum computing platforms by connecting smaller QCs.
QNs [4] also enable various important applications [5]–[9].
However, QN communication is challenging—e.g., physi-
cal transmission of quantum states across nodes can incur
irreparable communication errors, as the no-cloning theo-
rem [10] proscribes making independent copies of arbitrary
qubits. At the same time, certain aspects unique to the quan-
tum regime, such as entangled states, enable novel mech-
anisms for communication. In particular, teleportation [11]
transfers quantum states with just classical communication
but requires an a priori establishment of entangled pairs

(EPs). This article presents techniques for the efficient es-
tablishment of EPs in a network.
The establishment of EPs over long distances is challeng-

ing. Coordinated entanglement swapping (ES) (e.g., DLCZ
protocol [12]) using quantum repeaters can be used to estab-
lish long-distance entanglements from short-distance entan-
glements. However, owing to the low probability of success
of the underlying physical processes (short-distance entan-
glements and swappings), EP generation can incur signif-
icant latency—of the order of tens to hundreds of seconds
between nodes hundreds of kilometers away [13]. Thus, we
need to develop techniques that can facilitate the fast gen-
eration of long-distance EPs. We employ two strategies to
minimize generation latencies: 1) select optimal swapping
trees (not just paths as in prior works [14]–[17]) with a pro-
tocol that retains unused EPs and 2) use multiple trees for
each given node pair; this reduces effective latency by using

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 3, 2022 4100420

https://orcid.org/0000-0002-4963-2071

Engineeringuantum
Transactions onIEEE

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION

all the available network resources. In the above context, we
address the following problems.

1) Quantum network routing (QNR) single-path QNR-SP
problem: Given a single (s, d) pair, select a minimum-
latency swapping tree under given constraints.

2) QNR problem: Given a set of source–destination (s, d)
pairs, select a set of swapping trees for each pair with
the maximum aggregate EP generation rate, under fi-
delity and resource constraints.

To the best of our knowledge, no prior work has addressed
the problem of selecting an efficient swapping tree for en-
tanglement routing; they all consider selecting routing paths
(Caleffi [18] selects a path using a metric based on balanced
trees; see Section III-B). Almost all the prior works have
considered the “waitless” model, wherein all the underlying
physical processes much succeed near simultaneously for
an EP to be generated; this model incurs minimal decoher-
ence but yields very low EP generation rates. In contrast,
we consider the “waiting” protocol, wherein, at each swap
operation, the earlier arriving EP waits for a limited time for
the other EP to be generated. Such an approach with efficient
swapping trees yields high entanglement rates; the potential
decoherence risk can be handled by discarding qubits that
“age” beyond a certain threshold.
Our contributions:We formulate the entanglement routing

problem (see Section III) inQNs in terms of selecting optimal
swapping trees in the “waiting” protocol, under fidelity con-
straints. In this context, wemake the following contributions.

1) For the QNR-SP problem, we design an optimal al-
gorithm with fidelity and resource constraints (see
Section IV).

2) Though polynomial time, the above optimal algorithm
has high time complexity; we, thus, also design a near-
linear time heuristic for the QNR-SP problem based
on an appropriate metric, which essentially restricts the
solutions to balanced swapping trees (see Section V).

3) For the general QNR problem, we design an efficient
iterative augmenting-tree algorithm (see Section VI)
and show its effectiveness with respect to an optimal
linear programming (LP) solution based on hypergraph
flows.

4) We conduct extensive evaluations (see Section VII)
using NetSquid simulator and show that our solutions
outperform the prior approaches by an order of mag-
nitude, while incurring little fidelity degradation. We
also show that our schemes can generate high-fidelity
EPs over nodes 500–1000 km away.

II. QC BACKGROUND
Qubit states:Quantum computation manipulates qubits anal-
ogous to how classical computation manipulates bits. At any
given time, a bit may be in one of two states, traditionally rep-
resented by 0 and 1. A quantum state represented by a qubit
is a superposition of classical states and is usually written as

FIGURE 1. (a) Teleportation of |q〉 from A to B, while consuming an EP
(e1, e2). (b) ES over the triplet of nodes (A, B,C), which results in A’s
qubit entangled with C’s qubit. This can be viewed as a teleportation of
e2 from node B to C.

α0|0〉 + α1|1〉, where α0 and α1 are amplitudes represented
by complex numbers and such that |α0|2 + |α1|2 = 1. Here,
|0〉 and |1〉 are the standard (orthonormal) basis states; con-
cretely, they may represent physical properties, such as spin
(down/up), polarization, charge direction, etc. When a qubit
such as above is measured, it collapses to a |0〉 state with a
probability of |α0|2 and to a |1〉 state with a probability of
|α1|2. In general, a state of an n-qubit system can be repre-
sented as �2n−1

i=0 αi|i〉, where “i” in |i〉 is i’s bit representation.
Entanglement:Entangled pure1 states aremultiqubit states

that cannot be “factorized” into independent single-qubit
states. For example, the two-qubit state 1√

2
|00〉 + 1√

2
|11〉;

this particular system is a maximally entangled state. We
refer to maximally entangled pairs of qubits as EPs. The
surprising aspect of entangled states is that the combined
system continues to stay entangled, even when the individual
qubits are physically separated by large distances. This facili-
tates many applications, e.g., the teleportation of qubit states
by local operations and classical information exchange, as
described next.
Teleportation: The direct transmission of quantum data is

subject to unrecoverable errors, as classical procedures, such
as amplified signals or retransmission, cannot be applied due
to quantum no-cloning [10], [20].2 An alternativemechanism
for quantum communication is teleportation [see Fig. 1(a)],
where a qubit q from a node A is recreated in another node B
(while “destroying” the original qubit q) using only classical
communication. However, this process requires that an EP
already established over the nodes A and B. Teleportation
can, thus, be used to reliably transfer quantum information.
At a high level, the process of teleporting an arbitrary qubit,
say qubit q, from node A to node B can be summarized as
follows.

1) An EP pair (e1, e2) is generated over A and B, with e1
stored at A and e2 stored at B.

1In this article, we largely deal with only pure qubit states. Entangle-
ment of general mixed states is defined in terms of separation of density
matrices [19].

2Quantum error correction mechanisms [21], [22] can be used to mitigate
the transmission errors, but their implementation is very challenging and is
not expected to be used until later generations of QNs.

4100420 VOLUME 3, 2022

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION Engineeringuantum
Transactions onIEEE

2) At A, a Bell-state measurement (BSM) operation over
e1 and q is performed, and the two-classical bit mea-
surement output (c1c2) is sent toB through the classical
communication channel; at this point, the qubits q and
e1 at A are destroyed.

3) Manipulating the EP-pair qubit e2 at B based on re-
ceived (c1, c2) changes its state to q’s initial state.

Depending on the physical realization of qubits and the
BSM operation, it may not always be possible to success-
fully generate the two classical bits, as the BSM operation is
stochastic.
Entanglement swapping: ES is an application of telepor-

tation to generate EPs over remote nodes [see Fig. 1(b)]. If A
and B share an EP and B teleports its qubit to C, then A and
C end up sharing an EP. More elaborately, let us assume that
A and B share an EP, and B and C share a separate EP. Now,
B performs a BSM on its two qubits and communicates the
result toC (teleporting its qubit that is entangled with A toC).
WhenC finishes the protocol, it has a qubit that is entangled
with A’s qubit. Thus, an ES operation can be looked up as
being performed over a triplet of nodes (A,B,C) with an EP
available at the two pairs of adjacent nodes (A,B) and (B,C);
it results in an EP over the pair of nodes (A,C).
Fidelity: decoherence and operation driven: Fidelity is a

measure of how close a realized state is to the ideal. The fi-
delity of qubit decreases with time, due to interactionwith the
environment, as well as gate operations (e.g., in ES). Time-
driven fidelity degradation is called decoherence. To bound
decoherence, we limit the aggregate time a qubit spends in
a quantum memory before being consumed. With regard to
operation-driven fidelity degradation, Briegel et al. [23] give
an expression that relates the fidelity of an EP generated by
ES to the fidelities of the operands, in terms of the noise
introduced by swap operations and the number of link EPs
used. The order of the swap operations (i.e., the structure
of the swapping tree) does not affect the fidelity. Thus, the
operation-driven fidelity degradation of the final EP gener-
ated by a swapping tree T can be controlled by limiting
the number of leaves of T , assuming that the link EPs have
uniform fidelity (as in [15]).
Entanglement purification [23] and quantum error correc-

tion [24] have been widely used to combat fidelity degrada-
tion. Our work focuses on optimally scheduling ES opera-
tions with constraints on fidelity degradation, without purifi-
cation or error correction.
Quantum memories: Multiple quantum memories have

been recently proposed to bring QNs into realization. Types
of quantum memories that support BSMs and gate unitary
operations and probably have a long decoherence time can
be used in quantum communications. Most of them are mat-
ter based, which have photonic interface to produce matter–
matter entanglement over two neighboring nodes (see be-
low). At a high level, there are three different quantum mem-
ory platforms: quantum dots, trapped atoms or ions, and color
centers in diamond. Each has its own physical characteristics

and applications. While quantum dots have the ability to
process quantum information very fast, they exhibit a very
low decoherence time among others [25], [26]. To overcome
the low efficiency of single atom–photon coupling process,
atomic ensemble schemes have been proposed [12], where
along with dynamic decoupling and cooling techniques, de-
coherence times of a few seconds have been achieved [27]–
[29]. For trapped ion memories, decoherence times from
several minutes to few hours have been demonstrated [30],
[31]. To further increase the entanglement generation rate,
Bhaskar [32] proposes a way to use a single silicon–vacancy
color center in diamond to perform asynchronous photonic
BSM at the node located in the middle of two adjacent quan-
tum nodes.

A. GENERATING EPS
As described above, teleportation, which is the only viable
means of transferring quantum states over long distances,
requires an a priori distribution of EPs. Thus, we need effi-
cient mechanisms to establish EPs across remote QN nodes;
this is the goal of our work. In the following, we start with
describing how EPs are generated between adjacent (i.e.,
one-hop away) nodes and, then, discuss how EPs across a
pair of remote nodes can be established via ESs.

1) GENERATING EP OVER ADJACENT NODES
The physical realization of qubits determines the technique
used for sharing EPs between adjacent nodes. The heralded
entanglement process [14], [18] to generate an atom–atom
EP between adjacent nodes A and B is as follows.

1) Generate an EP of atom and a telecom-wavelength
photon at node A and B. Qubits at each node are gener-
ally realized in an atomic form for longer term storage,
while photonic qubits are used for transmission.

2) Once an atom–photon entanglement is locally gen-
erated at each node (at the same time), the telecom
photons are then transmitted over an optical fiber to
a photon–photon/optical BSM device C located in the
middle of A and B so that the photons arrive atC at the
same time.

3) The device C performs a BSM over the photons and
transmits the classical result to A or B to complete ES.

Other entanglement generation processes have been pro-
posed [21]; our techniques themselves are independent of
how the link EP are generated.

2) GENERATING EP BETWEEN REMOTE NODES
Now, EP between nonadjacent nodes connected by a path in
the network can be established by performing a sequence of
ESs at intermediate nodes; this requires an a priori EP over
each of the adjacent pairs of nodes in the path. For example,
consider a path of nodes x0, x1, x2, x3, x4, x5, with an EP
between every pair of adjacent nodes (xi, xi+1). Thus, each
node xi (1 ≤ i ≤ 4) has two qubits, one of which is entangled

VOLUME 3, 2022 4100420

Engineeringuantum
Transactions onIEEE

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION

FIGURE 2. Swapping tree over a path. The leaves of the tree are the path
links, which generate link EPs continuously.

FIGURE 3. Key notations used.

FIGURE 4. Consider the path in (a). The imbalanced tree of (b) has a
higher EP generation rate than that of the balanced tree of (c). Here, the
numbers represent the EP generation rates over adjacent links or node
pairs.

with xi−1 and the other with xi+1. Nodes x0 and x5 have only
one qubit each. To establish an EP between x0 and x5, we can
perform a sequence of ESs, as shown in Fig. 2. Similarly, the
sequence of ES over the following triplets would also work:
(x2, x3, x4), (x2, x4, x5), (x0, x1, x2), (x0, x2, x5).

3) SWAPPING TREES
In general, given a path P = s� d from s to d, any complete
binary tree (called a swapping tree) over the ordered links in
P gives a way to generate an EP over (s, d). Each vertex in
the tree corresponds to a pair of network nodes in P, with
each leaf representing a link in P. Every pair of siblings
(A,B) and (B,C) performs an ES over (A,B,C) to yield an
EP over (A,C)—their parent; see Fig. 2. Note that subtrees
of a swapping tree execute in parallel. Different swapping
trees over the same path P can have different performance
characteristics, as discussed later (see Fig. 4).

Expected generation latency/rate of EPs: In general, our
goal is to continuously generate EPs at some rate using
a swapping tree, using continuously generated EPs at the
leaves. The stochastic nature of ES operations means that
an EP at the tree’s root will be successfully generated only
after many failed attempts and, hence, significant latency.We
refer to this latency as the generation latency of the EP at
the root, and in short, just the generation latency of the tree.
EP generation rate is the inverse of its generation latency.
Whenever we refer to generation latency/rate, we implicitly
mean expected generation latency/rate.

4) TWO GENERATION PROTOCOLS: WaitLess AND
Waiting

When a swapping tree is used to (continuously) generate
EPs, there are two fundamentally different generation pro-
tocols [13], [33].

1) WaitLess protocol: In this model, all the underlying
processes, including link EP generations and atomic
BSMs, are synchronized. If all of them succeed, then
the end-to-end EP is generated. If any of the underlying
processes fail, then all the generated EPs are discarded
and the whole process starts again from scratch (from
generation of EP at links). In the WaitLess protocol,
all swapping trees over a given path P incur the same
generation latency—thus, here, the goal is to select an
optimal path P (as in [14] and [15]).

2) Waiting protocol: In the Waiting protocol, a qubit
of an EPmay wait (in a quantummemory) for its coun-
terpart to become available so that an ES operation can
be performed. Using such storage, we preclude dis-
carding successfully generated EPs and, thus, reduce
the overall latency in generation of a root-level EP.
For example, let (A,B) and (B,C) be two siblings in
a swapping tree and EP for (A,B) is generated first.
Then, EP (A,B) may wait for the EP (B,C) to be suc-
cessfully generated. Once the EP (B,C) is generated,
the ES operation is done over the triplet (A,B,C) to
generate the EP (A,C). If the EP (A,B) waits beyond
a certain threshold, then it may decohere.

Hardware requirement differences: WaitLess protocols
can generate EPs without quantum memories in a relay fash-
ion if the EP generation among adjacent nodes can be tightly
synchronized. In contrast, Waiting protocols benefit from
memories with good coherence times (see Section VII).

5) WHY Waiting’S ENTANGLEMENT GENERATION RATE IS
NEVER WORSE
The focus of the WaitLess protocol is to avoid qubit
decoherence due to storage. However, it results in very low
generation rates due to a very low probability of all the
underlying processes succeeding at the same time. However,
since qubit coherence times are typically higher than the link

4100420 VOLUME 3, 2022

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION Engineeringuantum
Transactions onIEEE

generation latencies,3 an appropriately designed Waiting
protocol will always yield better generation rates without
significantly compromising the fidelity (see Theorem 1).
The key is to bound the waiting time to limit decoherence
as desired, e.g., in our protocol, we restrict to trees with
high expected fidelities (see Section III) and discard qubits
that “age” beyond a threshold (see Section IV-B). Both the
protocols use the same number of quantum memories
(2 per node), though the Waiting protocols will
benefit from low-decoherence memories; other hardware
requirements also remain the same.
Theorem 1: Consider a QN, a path P, a swapping tree T

over P, a WaitLess protocol X , and a Waiting protocol
Y . Protocol Y discards qubits that age (stay in memory) be-
yond a certain threshold τ (presumably, equal to the coher-
ence time). We claim that Y ’s EP generation rate will at least
be that of X , irrespective of τ and T (as long as it is over P),
while ensuring that EPs generated byY are formed by nonde-
cohered qubits and the operation-driven fidelity degradation
of Y EPs is same as X .
The above theorem suggests that the Waiting approach

is always a better performing approach, irrespective of the
decoherence time/limitations. See the proof in Appendix B.

III. MODEL, PROBLEM, AND RELATED WORKS
In this section, we discuss our network model, formulate the
problem addressed, and discuss related work.
Network model:We denote a QNwith a graphG = (V,E),

withV = {v1, v2, . . . , vn} andE = {(vi, v j)} denoting the set
of nodes and links, respectively. Pairs of nodes connected by
a link are defined as adjacent nodes. We follow the network
model in [18] closely. Thus, each node has an atom–photon
EP generator with generation latency (tg) and probability of
success (pg). Generation latency is the time between suc-
cessive attempts by the node to excite the atom to gener-
ate an atom–photon EP; this implicitly includes the times
for photon transmission, optical BSM latency, and classical
acknowledgement. For clarity of presentation and without
loss of generality, we assume homogeneous network nodes
with same parameter values. The generation rate is the in-
verse of generation latency, as before. A node’s atom–photon
generation capacity/rate is its aggregate capacity and may be
split across its incident links (i.e., in generation of EPs over
its incident links/nodes). Each node is also equipped with a
certain number of atomic memories to store the qubits of the
atom–atom EPs. A network link is a quantum channel (e.g.,
using an optical fiber or a free-space link) and, in our context,
is used only for the establishment of link EP. In particular,
a link e = (A,B) is used to transmit telecom photons from
A and B to the photon–photon BSM device in the middle
of e. Thus, each link is composed of two half-links with a

3Link generation latencies for 5–100 km links range from about 3–350
ms for typical network parameters [18], while coherence times of few sec-
onds are very realistic (coherence times of several seconds [34], [35] have
been shown long ago, and more recently, even coherence times of several
minutes [36], [37] to a few hours [31], [38] have been demonstrated).

probability of transmission success (pe) that decreases expo-
nentially with the link distance (see Section VII). The optical
BSM operation has a certain probability of success (pob). To
facilitate atom–atom ES operations, each network node is
also equipped with an atomic BSM device with an operation
latency (tb) and probability of success (pb). See Fig. 3 for
a pictorial view of the above notations. Finally, there is an
independent classical network with a transmission latency
(tc); we assume that classical transmission always succeeds.
Single versus multiple links between nodes: For our tech-

niques, multiple links between a pair of adjacent nodes can
be replaced by a single link of aggregated rate/capacity.
Hence, we assume only a single link between every pair of
nodes. However, distinct multiple links between nodes have
been used creatively in [14] (which refers to them as mul-
tiple channels); thus, we will discuss multiple links further
in Section VII when we evaluate various techniques. We note
that the all-photonic protocol in [39] is essentially a more
sophisticated version of the multilink WaitLess protocol
in [14] to further minimize memory requirements, but it uses
multipartite cluster states, which are challenging to create.
In either case, in terms of the selection of paths/trees, the
path selection techniques from [14] should also apply to the
all-photonic protocol with certain modifications to account
for how the cluster states are generated.
EP generation latency of a swapping tree: Given a swap-

ping tree and EP generation rates at the leaves (network
links), we wish to estimate the generation latency of the
EPs over the remote pair corresponding to the tree’s root
with the Waiting protocol. In the following, we develop
a recursive equation. Consider a node (A,C) in the tree, with
(A,B) and (B,C) as its two children. Let TAB,TBC, and TAC be
the corresponding (expected) generation latencies of the EPs
over the three pairs of nodes. In the following, we derive an
expression for TAC in terms of TAB and TBC; this expression
will be sufficient to determine the expected latency of the
overall swapping tree by applying the expression iteratively.
We start with an observation.
Observation 1: If two EP arrival processes X1 and X2 are

exponentially distributed with a mean interarrival latency of
λ each, then the expected interarrival latency of max(X,Y)
is (3/2)λ.

From above, if assume TAB and TBC to be exponentially
distributed with the same expected generation latency of T ,
then the expected latency of both EPs arriving is (3/2)T .
Thus, we have

TAC =
(
3

2
T + tb + tc

)
/pb. (1)

Remarks: We make the following remarks regarding the
above expression. First, when TAB �= TBC, we are able to only
derive an upper bound on TAC, which is given by the above
equation but with T replaced by max(TAB,TBC).4 However,

4The 3-over-2 formula as an upper bound has also been corroborated in
a recent work [40], which derives analytical bounds on EP latency times in
more general contexts.

VOLUME 3, 2022 4100420

Engineeringuantum
Transactions onIEEE

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION

in our methods, the above assumption of TAB = TBC will hold
as we would only be considering “throttled” trees to save on
underlying network resources (see Section IV). Second, our
motivation for the exponential distribution assumption stems
from the fact that the EP generation latency at the link level is
certainly exponentially distributed if we assume the underly-
ing probabilistic events to have a Poisson distribution. Third,
note that the resulting distribution is not exponential. Despite
this, we apply the above equation recursively to compute the
tree’s generation latency. However, in our evaluations, we
observe the validity of this approximation since our analysis
matches closely with the simulation results. Finally, (1) is
conservative in the sense that each round of an EP generation
of any subtree’s root starts from scratch (i.e., with no link
EPs from prior round) and ends with either an EP generation
at the whole swapping tree’s root or an atomic BSM failure
at the subtree’s root. We do not “pipeline” any operations
across rounds within a subtree, whichmay lower latency; this
is beyond the scope of this article.

A. PROBLEM FORMULATION
We now formulate the central problem of selecting multi-
ple swapping trees for each given source–destination pair.
The selection of multiple routes is a well-established strat-
egy [14]–[16] to maximize entanglement rates.
Quantum network routing (QNR) problem: Given a QN

and a set of source–destination pairs {(si, di)}, the QNR prob-
lem is to determine a set Ti of swapping trees for each pair
(si, di) such that the sum of the EP rates of all the trees in⋃
i Ti is maximized under the following constraints.

1) Node constraints: For each node, the aggregate re-
sources used by

⋃
i Ti are less than the available re-

sources; we formulate this formally in the following.
2) Fidelity constraints: Each swapping tree in

⋃
i Ti satis-

fies the following: a) the number of leaves is less than
a given threshold τl ; this is to limit fidelity degradation
due to gate operations; and b) total memory storage
time of any qubit is less5 than a given decoherence
threshold τd .

Informally, the swapping trees may also satisfy some fair-
ness constraint across the given source–destination pairs. A
special case of the above QNR problem is to select a single
tree for a source–destination pair; we address this in the next
section.
Formulating node constraints: Consider a swapping tree

T ∈ ⋃
i Ti over a path P. For each link e ∈ P, let R(e, T) be

the EP rate being used by T over the link e in P. Let us define
Re = ∑

T R(e, T), and letE(i) be the set of edges incident on

5We note that, in our context, the storage time and the memory coherence
time are statistical quantities due to the underlying statistical mechanisms.
However, for the purposes of selecting a swapping tree, we use a fixed
decoherence threshold τd value equal to the mean of the distribution of the
coherence time (recent work [41] computes optimal cutoffs/thresholds, and
their techniques can be used to pick τd). When simulating a selected tree for
generation of EPs, we can implement coherence time as a statistical measure.

i. Then, the node capacity constraint is formulated as follows:

1/tg ≥
∑
e∈E(i)

Re/(pg
2pe

2pob) ∀i ∈ V. (2)

The above comes from the fact that to generate a sin-
gle link EP over e, each end node of e needs to generate
1/(pg2pe2pob) photons successfully, since each photon (from
each end node) has a generation success of pg and a transmis-
sion success rate of pe, and the optical BSM’s success proba-
bility over the two successfully arriving photons is pob. Note
that 1/tg is a node’s total generation capacity. In addition,
the memory constraint is that for any node i, the memory
available in i should be more than 2x+ y, where x is the
number of swapping trees that use i as an intermediate node
and y is the number of trees that use i as an end node.

B. RELATED WORKS
There have been a few works in the recent years that have
addressed generating long-distance EPs efficiently. All of
these works have focused on selecting an efficient routing
path for the swapping process (Caleffi [18] also selects a
path, but using a metric based on balanced trees). In addition,
all except [18] have looked at the WaitLess protocol of
generating the EPs. Recall that in the WaitLessmodel, the
selection of paths suffices, while in theWaitingmodel, one
needs to consider the selection of efficient swapping trees
with high fidelity. The selection of optimal swapping trees is
a fundamentallymore challenging problem than the selection
of paths—and has not been addressed before, to the best of
our knowledge.We start with discussing how theWaitLess
model works.

1) WaitLess APPROACHES
The most recent works to address the above problem are [14]
and [15], both of which consider the WaitLess model. In
particular, Shi and Qian [14] design a Dijkstra-like algorithm
to construct an optimal path between a pair of nodes, when
there are multiple links (channels) between adjacent nodes.
Then, they use the algorithm iteratively to select multiple
paths over multiple pairs of nodes. Chakraborty et al. [15]
design a multicommodity-flow-like LP formulation to select
routing paths for a set of source–destination pairs. They map
the operation-based fidelity constraint to the path length (as
in [23]) and use node copies to model the constraint in the
LP. However, they explicitly assume that the link EP gener-
ation is deterministic—i.e., always succeeds. Among earlier
relevant works, Pant et al. [16] propose a greedy solution for
grid networks, and Chakraborty et al. [17] propose virtual-
path-based routing in ring/grid networks.

2) Waiting APPROACH
Owing to photon loss, establishing long-distance entangle-
ment between remote nodes at L distance by direct trans-
mission yields EP rates that decay exponentially with L. The

4100420 VOLUME 3, 2022

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION Engineeringuantum
Transactions onIEEE

DLCZ protocol [12], [13] broke this exponential barrier us-
ing 2k equidistant intermediate nodes to perform ES opera-
tions, implicitly over a balanced binary tree, with a Wait-
ing protocol; this makes the EP generation rate decay only
polynomially in L. More recently, Caleffi [18] formulated the
entanglement generation rate on a given path between two
nodes, under the more realistic condition where the interme-
diate nodes in the path may not all be equidistant, but still
considered only balanced trees. Their path-based metric was
then used to select the optimal path by enumerating over the
exponentially many paths in the network.
Our approach (versus [18]): Though Caleffi [18] consid-

ers only balanced trees, its brute-force algorithm is literally
impossible to run for networks more than a few tens of nodes
(see Section VII). In our work, we observe that a path has
many swapping trees, and, in general, imbalanced trees may
even be better (see Fig. 4). Thus, we design a polynomial-
time dynamic programming (DP) algorithm that delivers an
optimal high-fidelity swapping tree; our DP approach effec-
tively considers all possible swapping trees, not just balanced
ones (note that, even over a single path, there are exponen-
tially many trees). The incorporation of fidelity (including
decoherence) in our DP approach requires nontrivial obser-
vation and analysis (see Section IV-B). Our Balanced-
Tree heuristic (see Section V) is closer to [18]’s work, in
that both consider only balanced trees; however, we use a
heuristic metric that facilitates a polynomial-time Dijkstra-
like heuristic to select the optimal path, while their recursive
metric6 (albeit more accurate than ours) is not amenable to
an efficient (polynomial-time) search algorithm.

3) OTHER WORKS
Jiang et al. [42] address a related problem; given a path with
uniform link lengths, they give an algorithm for selecting an
optimal sequence of swapping and purification operations
to produce an EP with fidelity constraints. In other recent
works, Dahlberg et al. [43] design physical and link layer
protocols of a QN stack, and Kozlowski et al. [44] pro-
pose a data plane protocol to generate EPs within decoher-
ence thresholds along a given routing path. More recently,
Bugalho et al. [45] propose an algorithm to efficiently dis-
tribute multipartite entanglement across over than two nodes.

IV. OPTIMAL ALGORITHM FOR SINGLE TREE
In this section, we consider a special case of the QNR
problem, viz., the case wherein there is a single source–
destination (s, d) pair and the goal is to select a single swap-
ping tree for the (s, d) pair. For this special case, we design
an optimal algorithm based on DP. This optimal algorithm
can be used iteratively to develop an efficient heuristic for
the general QNR problem, as in Section VI.

6We note that their formula (see [18, eq. (10)]) is incorrect as it either
ignores the 3/2 factor or assumes the EP generations to be synchronized
across all links. In addition, their expression for “qubit age” ignores the
“waiting for ES” time completely.

QNR single-path problem: Given a QN and a source–
destination pair (s, d), theQNR-SP problem is to determine a
single swapping tree that maximizes the expected generation
rate (i.e., minimizes the expected generation latency) of EPs
over (s, d), under the capacity and fidelity constraints.

For homogeneous nodes and link parameters, it is easy to
see that the best swapping tree is the balanced or almost-
balanced tree over the shortest path. We note that QNR-SP
is not a special case of QNR in the formal sense, e.g., the
LP algorithm (see Appendix A) for QNR cannot be used for
the QNR-SP problem, due to the single-tree requirement (LP
may produce multiple trees). As described in Section III-B,
the QNR-SP problem has been addressed before in [14] and
[18] under different models.

A. DP FORMULATION
First, we note that a Dijkstra-like shortest path approach that
builds a shortest-path tree greedily does not work for the
QNR-SP problem—mainly because the task is to find an op-
timal tree rather than an optimal path. As noted before, a rout-
ing path can have exponentially many swapping trees over it,
with different generation latencies. The recursive expression
for computing the generation latency given in Section III
suggests that a DP approach, similar to the Bellman–Ford
or Floyd–Warshall’s classical algorithms for shortest paths,
may be applicable for the QNR-SP problem. However, we
need to “combine” trees rather than paths in the recursive step
of a DP approach. Consequently, we were unable to design a
DP approach based on the Floyd–Warshall’s approach but are
able to extend the Bellman–Ford approach for the QNR-SP
problem after addressing a few challenges discussed in the
following.
DP formulation: We start with designing a DP algorithm

without worrying about the decoherence constraint; we in-
corporate the decoherence constraint in the next subsection.
Given a network, let T [i, j, h] be the optimal expected la-
tency of generating EP pairs over (i, j) using a swapping tree
of height at most h. Note that T [i, j, 0] for adjacent nodes
(i, j) can be given by tg

pg2pe2pob
. Now, based on (1), we start

with the following equation for computing T [i, j, h] in terms
of smaller height swapping trees.

T [i, j, h] = min

(
T [i, j, h− 1],

(
3

2
B+ tc + tb

)
/pb

)

where

B = min
k∈V

max (T [i, k, h− 1],T [k, j, h− 1]) . (3)

However, there are three issues that need to be ad-
dressed before the above formulation can be turned into a
viable algorithm. We address these in the following three
paragraphs.
(1) The 3/2 factor; throttled trees: As mentioned in

Section III, the 3/2 factor is an accurate estimate if the
corresponding T s are equal. However, in the above equation,

VOLUME 3, 2022 4100420

Engineeringuantum
Transactions onIEEE

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION

T [i, k, h− 1] and T [k, j, h− 1] may not be equal. In our
overall methodology, to conserve node and link resources, we
postprocess or “throttle” the swapping tree obtained from the
DP algorithm by increasing the generation latencies of some
of the nonroot nodes such that 1) the latencies of siblings
are equalized and 2) the parents’ latency is related to the
children’s latency by (1). We refer to this postprocessing
as throttling and a tree that satisfies the above conditions
as a throttled tree. Note that throttling does not alter the
generation latency of the root and, thus, the overall tree;
we prove the optimality of the overall algorithm formally
in Theorem 2. In the following, we motivate throttling and
describe how it is achieved.
Justification: In a given swapping tree, consider a pair of

siblings x and y that have unequal generation latencies/rates.
Let x be the one with a lower latency (higher rate). Then, x
will likely have to discard many EPs while waiting for an
EP from y. To minimize this discarding of EPs from x and
to conserve underlying network resources so that they can be
used in other swapping trees (in a general QNR solution), we
“throttle,” increase (decrease) the generation latency (rate)
of, the sibling x to match that of y.
Throttling process: Consider a pair of siblings x and y in

the tree; let their parent be z. Let Tx,Ty, and Tz be their current
generation latencies, such that Tz = (32 max(Tx,Ty) + tc +
tb)/pb. There are two potential steps: 1) if the parent’s latency
is to be kept unchanged, but Tx < Ty, then Tx is increased to
Ty, which, thus, makes the above equation valid; and 2) if the
parent’s latency Tz is increased to T (by the above first step,
with z as a sibling), then we increase the latencies of both x
and y to 2/3(T pb − tc − tb). It is easy to see that applying
the two steps iteratively from the root to the leaves yields a
throttled tree, as defined above.
(2) Capacity violation at node k: Note that the mid-

dle/common node k in (3) may violate (node) capacity con-
straints in the merged tree corresponding to T [i, k, h], as
it may use its full capacity in the trees corresponding to
T [i, k, h− 1] and T [k, j, h− 1]. We address the above by
adding two additional parameters to the subproblem function
T , corresponding to “usage percentage” of the end nodes. In
particular, we define T [i, j, h, ui, u j] as the optimal latency
of a swapping tree of height at most h, under the constraint
that the end nodes i and j use at most ui and u j percentage
of the respective node generation capacities; here, ui and
u j can be positive integers between 1 and 100. The base
case T [i, j, 0, ui, u j] for adjacent nodes (i, j) is given by
tgmin(ui,u j)
pg2pe2pob

. Equation (3) is modified as follows to accommo-

date the additional usage parameters:

T [i, j, h, ui, u j] = min

(
T [i, j, h− 1, ui, u j],

(
3

2
B+ tc + tb

)
/pb

)
(4)

where

B = min
k, u+u′=100

max (T [i, k, h− 1, ui, u],

T [k, j, h− 1, u′, u j]
)
.

(3) Ensuring disjoint subtrees: Note that (3) implicitly
assumes that the swapping trees corresponding to the la-
tency values T [i, k, h− 1] and T [k, j, h− 1] are over disjoint
paths, i.e., there is no node v such that both the paths contain
v. If there is a common node v, then the combined tree corre-
sponding to [i, j, h] may violate the node capacity constraints
at v. This issue also arises in the classical Bellman–Ford’s or
Floyd–Warshall’s algorithms for shortest weighted paths, but
is harmless with the assumption of positive-weighted cycles.
We resolve the issue similarly here via the following lemma
(see Appendix C for the proof).
Lemma 1: Consider two swapping trees Tik and Tk j each

of height at most h− 1 over paths P1 : i� v � k and P2 :
k� v � j, each of which contains a common node v �= k.
Then, there exists two swapping trees Tiv and Tv j each of
height at most h− 1 over paths P′

1 : i� v and P′
2 : v � j

such that: 1) P′
1 is a subset of P1, and P

′
2 is a subset of P2, and

2) generation latency of Tiv is no greater than that of Tik, and
generation latency of Tv j is no greater than that of Tk j. �

Lemma 1 implies that if the swapping trees Tik and
Tk j corresponding to the latency values T [i, k, h− 1] and
T [k, j, h− 1] have a common node, then there exist swap-
ping trees of equal or better latency without any common
nodes and these trees can be used to build a lower latency
tree over (i, j).
Overall DP algorithm and optimality: Our DP-based al-

gorithm for the QNR-SP problem for a given (s, d) pair is as
follows. We use a DP formulation based on (4) and the cor-
responding base case values to compute optimal generation
latency T [s, d, h, 100, 100] and the corresponding swapping
tree T . Then, we throttle the tree T as described in paragraph
(1) above. The following theorem (see Appendix D for proof)
states that the throttled tree thus obtained has the optimal
(minimum) expected generation latency among all throttled
trees.
Theorem 2: The above-described DP-based algorithm re-

turns a throttled swapping tree over (s, d) with minimum
expected generation latency (maximum expected generation
rate) among all throttled trees over the given (s, d) pair. �

B. INCORPORATING FIDELITY CONSTRAINTS
Till now, we have ignored the fidelity constraints. We incor-
porate them in this section by extending our DP formulation
from the previous section. Limiting the decoherence, i.e., the
qubit storage time, is challenging and is addressed first in
the following. Limiting the number of leaves of a swapping
tree is relatively easier and is discussed next. We start with a
definition.
Definition 1 (Qubit/tree age): Given a swapping tree, the

total time spent by a qubit in a swapping tree is the time spent
from its “birth” via an atom–photon EP generation at a node

4100420 VOLUME 3, 2022

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION Engineeringuantum
Transactions onIEEE

FIGURE 5. Qubit parameters in a swapping tree used to compute the
age of a qubit q at a leaf node l (q). Here, l (q) is the left-most leaf of the
subtree T (q).

till its consumption in a swapping operation or in generation
of the tree’s root EP. We refer to this as a qubit’s age. The
maximum age over all qubits in a swapping tree is called the
tree’s (expected) age. �
Estimating qubit age in a swapping tree: Consider a throt-

tled swapping tree T , with a generation latency of T . Con-
sider two siblings (A,B) and (B,C) at a depth7 of i (i > 0)
from T ’s root. If we ignore tc and tb terms in (1), then the
expected generation latency T (i) of both (A,B) and (B,C)
being at depth i is given by: T (i) = T

2 (
2
3 pb)

i. In addition, note
that only one of the EPs (A,B) or (B,C) waits for T (i) time
on average. Thus, the expected waiting times for each of the
four8 qubits is T (i)/2.
Based on the above, we can now easily estimate the total

waiting by a qubit q (referred to as q’s age) before it is
destroyed in a swapping operation. Let l(q) be the leaf, i.e.,
the link EP, of T that contains the qubit q. Let T (q) be the
maximal subtree in T such that l(q) is either its right-most
or left-most leaf. Note that T (q) is well defined for a tree
T and a qubit q. Let d(q) be the depth of the root of T (q)
in T , and let d′(q) be the depth of l(q) in the subtree T (q)
(see Fig. 5). The expected age A(q) of q can be estimated as
follows. Note that age of q is the total waiting by q at each
of l(q)’s ancestors in T (q); also note that at T (q)’s root, the
qubit q is destroyed, and hence, q does not age at any ancestor
of T (q)’s root. It is easy to see that the expected age A(q) is

A(q) =
⎛
⎝d(q)+d′(q)∑

i=d(q)
T (i)/2

⎞
⎠ + (tob + tp).

In the above equation, the last term is the time spent by q
waiting for its link EP to be established and is given by sum
of optical BSM (tob) and photon transmission latency (tp).
Note that the actual age of a qubit q is some distribution with
the above mean. We observe the following.
Observation 2: Given a swapping tree T , let Tl and Tr be

its left and right children, respectively. If the atomic BSM

7Defined as the distance of a node from the root; depth of the root is 0.
8Note that qubit B in (A,B) is different from that in (B,C).

probability pb is ≤ 75%, then the expected age of the right-
most or left-most descendant of either Tl or Tr is greater than
the expected age of any other qubit in the tree. �
DP formulation with decoherence/age constraint: If we

assume the atomic BSM probability pb ≤ 75%, then
we can design a DP algorithm for the QNR-SP prob-
lem with the decoherence constraint, as follows. Let
T [i, j, h, hll, hlr, hrl, hrr, ui, u j] be the optimal latency from
a swapping tree of height at most h, whose root’s left (right)
child’s left-most and right-most descendants are at depths of
(exactly) hll and hlr (hrl and hrr), each of which is upper
bounded by h. Here, ui and u j parameters are as before. Note

that T [i, j, 1, 0, 0, 0, 0, ui, u j] = tgmin(ui,u j)
pg2pe2pob

. We have

T [i, j, h, hll, hlr, hrl, hrr, ui, u j]

= min

(
T [i, j, h− 1, hll, hlr, hrl, hrr, ui, u j],

(
3

2
B+ tc + tb

)
/pb

)
(5)

where

B = min
k, g′is,u+u′=100

max (T [i, k, h− 1, hll − 1, g1, g2

hlr − 1, ui, u],

T [k, j, h− 1, hrl − 1, g3, g4

hrr − 1, u′, u j]
)
.

The above formulation will give us the optimal latency
swapping tree for each combination of (hll, hlr, hrl, hrr). We
remove the trees that violate the decoherence constraint and
pick the minimum-latency tree from the remaining. This
gives us a swapping tree with optimal latency under the de-
coherence constraint. The proof of optimality easily follows.
Constraint on the number of leaves: Limiting the number

of leaves to τl can be easily done by adding another parameter
for the number of leaves in the T array/function above. This
adds another factor of O(n2) to the time complexity, as we
need to check for all the combinations of the number of
leaves in the two subtrees. To optimize, we can now replace
the height parameter, but keeping the height parameters aids
in parallelism, as described in the following.
Time complexity; DP-OPT and DP-Approx algo-

rithms: Note that, in (6), we can precompute ming1,g2
T [. . . , g1, g2, . . .] and similarly ming3,g4 T [. . . , g3, g4, . . .]
before computing B. With this, the time complexity of the DP
formulation becomes O(n9), which can be further reduced
O(n5(log n)4) if we assume height of a tree to be at most
(c log n) for some constant c. For a real-time routing appli-
cation, the above time complexity is still high—as the algo-
rithm can take a few minutes on a single core. However, as
the algorithm lends to obvious parallelism, it can be executed
in as little as O((log n)2) time with sufficiently many cores,
using the height parameter sequentially. We can also reduce

VOLUME 3, 2022 4100420

Engineeringuantum
Transactions onIEEE

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION

the sequential time complexity to O(n5), by approximating
the maximum qubit’s age in a tree to the generation latency
of the tree, which is at most 3/(2pb) the actual value. Note
that maximum age of a qubit is at least 2T pb/3 and at most
T , where T is the generation latency of the tree. Finally,
we can make the algorithm more efficient by assuming the
usage parameter values to be 50%.9 We refer to the O(n5)
algorithm with the above assumptions as DP-Approx, and
the O(n5(log n)4) algorithm based on (6) as DP-OPT. Both
the algorithms use throttling after the DP formulation.

V. Balanced-Tree HEURISTIC FOR QNR-SP

The DP-based algorithms presented in Section IV for the
QNR-SP problem have high time complexity and, thus, may
not be practical for real-time route finding in large networks.
In this section, we develop an almost-linear time heuristic for
the QNR-SP problem, based on the classic Dijkstra shortest
path algorithm; the designed heuristic performs close to the
DP-based algorithms in our empirical studies.
Basic idea: The main reason for the high complexity of

our DP-based algorithms in Section IV is that the goal of the
QNR-SP problem is to select an optimal swapping tree rather
than a path. One way to circumvent this challenge efficiently
while still selecting near-optimal swapping tree is to restrict
ourselves to only “balanced” swapping trees. This restriction
allows us to think in terms of the selection of paths—rather
than trees—since each path has a unique10 balanced swap-
ping tree. We can then develop an appropriate path metric
based on above and design a Dijkstra-like algorithm to select
an (s, d) path that has the optimal metric value. We note that
Caleffi [18] also proposed a path metric based on balanced
swapping trees, but their metric, though accurate, only had
a recursive formulation without a closed-form expression—
and hence, was ultimately not useful in designing an efficient
algorithm. In contrast, we develop an approximate metric
with a closed-form expression, based on the “bottleneck”
link, as follows.
Path metric M: Consider a path P = (s, x1, x2, . . . , xn, d)

from s to d, with links (s, x1), (x1, x2), . . . , (xn, d) with
given EP latencies. We define the path metric for path P,
M(P), as the EP generation latency of a balanced swapping
over P, which can be estimated as follows. Let L be the link
in Pwith maximum generation latency. If L’s depth (distance
from the root) is the maximum in a throttled swapping tree,
then we can easily determine the accurate generation latency
of the tree. However, in general, L may not have the max-
imum depth, in which case we can still estimate the tree’s
latency approximately, if the tree is balanced, as follows.
In balanced swapping trees, assuming the maximum latency
link L to be at the maximum depth gives us a constant-factor
approximation of the tree’s generation latency. Thus, let us

9This also enforces s and d to use only 50% capacity; this can be resolved
by doubling s and d capacity a priori.

10In fact, there can be multiple balanced trees over a path whose length
is not a power of 2, but, since they differ minimally in our context, we can
pick a unique way of constructing a balanced tree over a path.

assume L to be at the maximum depth of a balanced tree over
P; this maximum depth is d =
(log2 |P|)�. Let the genera-
tion latency of L be TL. If we ignore the tb + tc term in (1),
then the generation latency of a throttled swapping tree can
be easily estimated to T (3

2pb
)d . The term tb + tc can also be

incorporated as follows. Let T (i) denote the expected latency
of the ancestor of L at a distance i from L. Then, we get the
recursive equation: T (i) = (32T (i− 1) + tb + tc)/pb. Then,
the path metric value M(P) for path P is given by T (d), the
generation latency of the tree’s root at a distance of d from
L, and is equal to

M(P) = T (d) = p̄dTL + [(p̄− 1)/(p̄d − 1)](tb + tc)/pb

where p̄ = 3/(2pb) and d =
(log2 |P|)�. The above is a
(1+3/(2pb))-factor approximation latency of a balanced and
throttled swapping tree overP; this can be shown easily using
analysis from Section IV-B.
Optimal balanced-tree selection: The above path met-

ric M() is a monotonically increasing function over paths,
i.e., if a path P1 is a subsequence of another path P2, then
M(P1) ≤ M(P2). Thus, we can tailor the classical Dijkstra’s
shortest path algorithm to select an (s, d) path with mini-
mum M(P) value, using the link’s EP generation latencies
as their weights. We refer to this algorithm as Balanced-
Tree, and it can be implemented with a time complexity
of O(m+ n log n) using Fibonacci heaps, where m is the
number of edges and n is the number nodes in the network.
Incorporating fidelity constraints: Fidelity constraints in

our path-metric-based setting can be handled by essentially
computing the optimal path for each path length (number
of hops in the path) up to τl and then pick the best path
among them that satisfies the fidelity constraints. This ob-
viously limits the number of leaves to τl and addresses the
operation-based fidelity degradation. The above also address
the decoherence/age constraint, since it is easy to see (from
analysis in Section IV-B) that the age of a balanced swapping
tree can be very closely approximated in terms of the latency
and the number of leaves. Now, to compute the optimal path
for each path length, we can use a simple DP approach that
run in O(mτl) time, where m is the number of edges and τl is
the constraint on the number of leaves.

VI. ITER: ITERATIVE QNR HEURISTIC
The general QNR problem can be formulated in terms of
hypergraph flows and solved using LP (see Appendix A).
Although polynomial-time and provably optimal, the LP-
based approach has a very high time complexity for it to be
practically useful. Here, we develop an efficient heuristic for
the QNR problem by iteratively using an QNR-SP algorithm.
ITER heuristic: To solve the QNR problem efficiently,

we apply the efficient DP-Approx algorithm iteratively—
finding an efficient swapping tree in each iteration for one
of the (si, di) pairs. The proposed algorithm is similar to
the classical Ford–Fulkerson augmenting path algorithm for
the max network flow problem at a high level, with some
low level and theoretical differences, as discussed in the

4100420 VOLUME 3, 2022

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION Engineeringuantum
Transactions onIEEE

following. The iterative-DP-Approx algorithm for the QNR
problem consists of the following steps.

1) Given a network, we computemaximumEP generation
rates for each network link using (7).
Use these as weights on the link.

2) For each (si, di) pair, use theDP-Approx algorithm to
find the optimal path Pi, under the capacity and fidelity
constraints. Consider a throttled and balanced swap-
ping tree Ti over Pi. Let T ∗ be the swapping tree with
highest generation rate; if this rate is below a certain
threshold, then quit.

3) Construct a residual network graph by subtracting the
resources used by T ∗, using (8).

4) Go to step 1.

Before we present the expressions required above, we
would like to point out key differences of our context with the
classic network flow setting. Even though we are augmenting
our solution one path at a time, the network resources are
fundamentally being used by swapping trees created over
these paths. These path flows do not really have a direction
of flow, but we can assign them a symbolic direction from
source to the direction. Even with these symbolic directions,
the flows in opposite directions over any edge k do not “can-
cel” each other as in the classical network flow. Moreover,
flow conservation law does not hold in our context (e.g., even
a path may not use same link rates on all links, due to them
being at different depths of the tree), and thus, the max-flow
min-cut theorem does not hold. Thus, ITERmay not give an
optimal solution, even for a single (s, d) pair.
Link EP generation rate/latency: Consider a pair of net-

work node i and j with corresponding current (residual) val-
ues of node latencies as tg(i) and tg(j). Assuming pg values to
be same for both nodes, the minimum EP link rate for (i, j)
is then given by

min(1/tg(i), 1/tg(j))pg
2pe

2pob. (6)

Residual node capacities: Let P be a path added by ITER,
at some earlier stage, and let T be the corresponding throttled
swapping tree over P. As in Section III, let R(e, T) be the
EP generation rate being used by T over a link e ∈ P, Re =∑

T R(e, T), and E(i) be the edges incident on i. Then, the
residual node rates can be calculated similar to (2) as follows.
In the following, tg′(i) is the original value

1/tg(i) = 1/tg
′(i) −

∑
e∈E(i)

Re/(pg
2pe

2pob) ∀i ∈ V. (7)

The residual memory capacity is easy to compute—each
path/tree uses two memory units for each intermediate node
and one memory unit for the end nodes.

VII. EVALUATIONS
The goal of our evaluations is to compare the EP generation
rates, evaluate the fidelity of generated EPs, and validate our
analytical models. We implement the various schemes over a
discrete event simulator for QNs called NetSquid [46]. The

NetSquid simulator accurately models various QN compo-
nents/aspects, and in particular, we are able to define various
QN components and simulate swapping trees protocols by
implementing gate operations in ES.

A. SWAPPING TREE PROTOCOL
Our algorithms compute swapping tree(s), and we need a
way to implement them on a network. We build our protocol
on top of the link layer of [43], which is delegated with the
task of continuously generating EPs on a link at a desired
rate (as per the swapping tree specifications). Note that a
link (a, b) may be in multiple swapping trees and, hence,
may need to handle multiple link layer requests at the same
time; we implement such link layer requests by creating in-
dependent atom–photon generators at a and b, with one pair
of synchronized generators for each link layer request. As
the links generate continuous EPs at desired rates, we need a
protocol to swap the EPs. Omitting the tedious bookkeeping
details, the key aspect of the protocol is that swap operation
is done only when both the appropriate EP pairs have arrived.
We implement all the gate operations (including atomic and
optical BSMs) within NetSquid to keep track of the fidelity
of the qubits. On BSM success, the swapping node transmits
classical bits to the end node, which manipulates its qubit,
and sends the final ack to the other end node. OnBSM failure,
a classical ack is send to all descendant link leaves, so that
they can now start accepting new link EPs; note that in our
protocol, a link l does not accept any more EPs, while its
ancestor is waiting for its sibling’s EP (see Fig. 6).

B. SIMULATION SETTING
Weuse a similar setting as in the recent work [14]. By default,
we use a network spread over an area of 100˜km × 100˜km.
We use the Waxman model [47], used to create Internet
topologies, to randomly distribute the nodes and create links;
we use the maximum link distance to be 10 km. We vary
the number of nodes from 25 to 500, with 100 as the de-
fault value. We choose the two parameters in the Waxman
model to maintain the number of links to 3% of the complete
graph (to ensure an average degree of 3–15 nodes). For the
QNR-SP problem, we pick (s, d) pairs within a certain range
of distance, with the default being 30–40 km; for the QNR
problem, we extend this range to 10–70 km.

1) PARAMETER VALUES
We use parameter values mostly similar to the ones used
in [18] corresponding to a single-atom-based quantum mem-
ory platform and vary some of them. In particular, we use the
atomic BSM probability of success (pb) to be 0.4 and latency
(tb) to be 10 μs; in some plots, we vary pb from 0.2 to 0.6.
The optical BSM probability of success (pob) is half of pb.
We use atom–photon generation times (tg) and probability
of success (pg) as 50 μs and 0.33, respectively. Finally, we
use photon transmission success probability as e−d/(2˜L) [18],
where L is the channel attenuation length (chosen as 20 km
for an optical fiber) and d is the distance between the nodes.

VOLUME 3, 2022 4100420

Engineeringuantum
Transactions onIEEE

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION

FIGURE 6. Illustration of the swapping tree protocol. The shown tree is
not a swapping tree, but rather a certain hierarchy of nodes to illustrate
the BSM operation in the swapping tree protocol. A link layer protocol
continuously generates EPs over links (x0, x2) and (x2, x4). On receiving
EP on links on either side, x1 (x3) attempts a BSM operation on the
stored qubit atoms. If the BSM succeeds, x1 (x3) sends two classical bits
(solid green arrows) to x2 (x4) for desired manipulation/correction after
which x2 (x4) sends an ACK (dashed green arrows) to the other end node
x0 (x2) to complete the EP generation. If BSM at x1 and x3 are both
successful, then x2 attempts the BSM as above. If a BSM at say x1 fails,
then x1 failure signals (red arrows) to all the descendant nodes of the
subtree rooted at x1 so that they can start accepting new EPs from the
link layer protocol. Note that, here, node x2 plays multiple roles and,
hence, appears at multiple places in the figure.

Each node’s memory size is randomly chosen within a range
of 15–20 units. Fidelity is modeled in NetSquid using two
parameter values, viz., depolarization (for decoherence) and
dephasing (for operation-driven) rates. We choose a deco-
herence time of 2 s based on achievable values with single-
atom memory platforms [48]; note that decoherence times
of even several minutes [36], [37] to hours [31], [38] has
been demonstrated for other applicable memory platforms.
Accordingly, we choose a depolarization rate of 0.01 such
that the fidelity after a second is 90%. Similarly, we choose
a dephasing rate of 1000, which corresponds to a link EP
fidelity of 99.5% [15].

C. ALGORITHMS AND PERFORMANCE METRICS
To compare our techniques with prior approaches, we im-
plement most recently proposed approaches, viz., 1) the
WaitLess-based LP approach from [15] (called Delft-
LP here) and 2) Q-Cast approach from [14] which is
WaitLess-based but uses multiple links and requires mem-
ories. The Waiting-based algorithm by Caleffi [18] uses
an exponential-time approach and is, thus, compared only
for small networks. The approaches in [16] and [17] are not
compared as they were found to be inferior to Q-Cast.

For all the algorithms except Q-Cast, we use only one
link between adjacent nodes, since only Q-Cast takes ad-
vantage of multiple links in a creative way. In particular,

for Q-Cast, we use W = 1, 5, or 10 sublinks (Shi and
Qian[14] call them channels) on each link, with the node
and link “capacity” divided equally among them. We note
that in Q-Cast, each node requires 2W memories (two for
each sublink) with sufficient coherence time to allow for the
entire swapping operation over the path to be completed. The
Delft-LP approach explicitly assumes that the generation
of link EPs is deterministic, i.e., the value pg2pe2pob is 1, and
does not model node generation rates. We address these dif-
ferences by extending their LP formulation: 1) we add a con-
straint on node generation rates and 2) add a pg2pe(i, j)2pob
factor to each link (i, j) in any path extracted from their LP
solution.
Among our schemes, we use DP-OPT, DP-Approx,

and Balanced-Tree (see Section IV-B) for the QNR-SP
problem, and LP (see Appendix A) and ITER schemes for
the QNR problem. For ITER, we use three schemes, i.e.,
ITER-DPA, ITER-Bal, and ITER-SP, which iterate over
DP-Approx, Balanced-Tree, and SP, respectively. To
be comprehensive, we also implement a simple SP algo-
rithm, which picks a balanced swapping tree over the shortest
path (minimum number of links). We compare the schemes
largely in terms of EP generation rates; we also compare the
execution times and EP fidelity.

D. COMPARISON WITH [18] FOR THE QNR-SP PROBLEM
Note that Caleffi [18] gives only the QNR-SP algorithm re-
ferred to as Caleffi; it takes exponential time making it
infeasible to run for network sizes much larger than 15–20. In
particular, for network sizes 17–20, it takes several hours, and
our preliminary analysis suggests that it will take of the order
of 1040 years on our 100-node network (see Appendix E).
Thus, we use a small network of 15 nodes over a 25 km
× 25 km area; we consider average node degrees of 3 or 6
(see Fig. 9). We see that DP-OPT outperforms Caleffi by
10% on average for the sparser graph and minimally for the
denser graph. However, for some instances, DP-OPT outper-
formedCaleffi by asmuch as 300% (seeAppendix F).We
see that DP-Approx performs similar to DP-OPT, while
Balanced-Tree is outperformed slightly by Caleffi;
however, for this small network, since the DP-OPT and DP-
Approx algorithms only take tens of hundreds of millisec-
onds (see Appendix E), Balanced-Tree need not be used
in practice.

E. QNR-SP PROBLEM (SINGLE TREE) RESULTS
We start with comparing various schemes for the QNR-
SP problem, in terms of EP generation rate. We compare
DP-Approx, DP-OPT, Balanced-Tree, SP, and Q-
Cast; note that the LP schemes cannot be used to select
a single tree, as they turn into ILPs (see Fig. 7), where we
plot the EP generation rate for various schemes for vary-
ing number of nodes, (s, d) distance, pb, and network link
density. We observe that DP-Approx and DP-OPT perform
very closely, with the Balanced-Tree heuristic perform-
ing close to them; all these three schemes outperform the

4100420 VOLUME 3, 2022

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION Engineeringuantum
Transactions onIEEE

FIGURE 7. (a)–(d) QNR-SP problem: EP generation rates for varying parameters.

FIGURE 8. (a)–(d) QNR problem: EP generation rates for varying parameters.

FIGURE 9. Compare the performance with Caleffi in a (a) low-density
network and (b) high-density network.

Q-Cast schemes (for W = 5, 10 sublinks) by an order of
magnitude. We do not plot Q-Cast for W = 1 sublinks,
as it performs much worse (less than 10−3 EP/s). We note
that Q-Cast’s EP rates here are much lower than the ones
published in [14], because Shi and Qian [14] uses link EP
success probability of 0.1 or more, while in our more realistic
model, the link EP success probability is pg2pe2pob = 0.012
for the default pb value.We reiterate that our schemes require
only twomemory units per node, while theQ-Cast schemes
requires 2W units. The main reason for poor performance
of Q-Cast (in spite of higher memory and link synchro-
nization) is that, in the WaitLess model, the EP genera-
tion over a path is a very low probability event—essentially
pl where p is the link-EP success probability and l is the
path length, for the case of W = 1 (the analysis for higher
W ’s is involved [14]). Finally, our proposed techniques also

outperform the SP algorithm, especially when the number
of possible paths (trees) between (s, d) pair increases. In
addition, we see that performance increases with increase in
pb, number of nodes, or network link density, as expected
due to the availability of better trees/paths; it also increases
with the decrease in (s, d) distance as fewer hops are needed.

F. QNR PROBLEM RESULTS
Wenow present performance comparison of various schemes
for the QNR problem. Here, we compare the following
schemes: ITER-DPA, ITER-Bal, ITER-SP, Delft-LP,
and Q-Cast with the optimal LP as the benchmark for
comparison (LP was not feasible to run for more than 100
nodes); see Fig. 8. Our observations are similar to that for
the QNR-SP problem results. We see that in all the plots,
LP being optimal performs the best, but is closely matched
by ITER-DPA and the efficient heuristic ITER-Bal. We
observe that the performance gap between our proposed tech-
niques and ITER-SP is higher than in the QNR-SP case,
as SP picks paths based on just the number of links. Our
schemes outperform both Delft-LP and Q-Cast by an
order of magnitude, for the same reason as mentioned above.

G. FIDELITY AND LONG-DISTANCE ENTANGLEMENTS
We now investigate the fidelity of the EPs generated. First,
we note that theQ-Cast andDelft-LP schemeswill incur
near-zero decoherence as they involve only transient storage.
Decoherence for other schemes is also negligible as the EP
generation latencies (tens of milliseconds) is much less than

VOLUME 3, 2022 4100420

Engineeringuantum
Transactions onIEEE

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION

FIGURE 10. EP generation over linear paths. (a) EP rates and (b) fidelity over linear paths with varying link lengths. (c) Maximum reachable distance
with links of 30–35 m lengths. (d) EP generation rates over linear paths with 10–50 km links to demonstrate the impact of varying link lengths.

FIGURE 11. Comparing with analytical results. (a) Analytical versus simulation results. (b) Throttled versus nonthrottled trees (QNR-SP). (c) Throttled
versus nonthrottled trees (QNR). (d) Fairness measure.

the coherence time. The operation-driven fidelity loss is ex-
pected to be similar for all schemes, as they all roughly use
the same order of links. Overall, we observed fidelities of
94–97% across all schemes (not shown), with our schemes
also performing better sometimes due to smaller number of
leaves.

1) LONG PATH GRAPHS
To test the limits of the schemes in terms of decoherence and
fidelity, we consider a long path network and estimate the
fidelity of EPs generated by schemes for increasing distances
and link lengths (link success probability decreases with in-
creasing link length). Fig. 10(a) and (b) shows EP genera-
tion rates and fidelity for path lengths of 500 and 1000 km
for varying link lengths, for the single-tree schemes DP-
Approx and Balanced-Tree. Q-Cast and Delft-LP
are not shown as their EP rate is near zero (≤ 10−20) at
these distances. We observe that our schemes yield EPs with
qubit fidelities of 65–82% and 40–64% for 500 and 1000 km
paths, respectively, with EP rates of 0.05–0.65 s−1. These are
viable results—since qubit copies with fidelities higher than
50% can be purified to smaller copies with arbitrarily higher
fidelities [49], [50].
Now, in Fig. 10(c), we demonstrate the effect of deco-

herence time of quantum memories used in nodes. Here,
we use 30–35 km links. We see that even with decoherence
time of as low as 100 ms, DP-Approx is able to create
EPs for up to 200 km, while Balanced-Tree can only

create EP for paths up to 120 km; they perform similarly for
larger decoherence times. As all the links are almost of the
same length, the optimal swapping will be largely balanced
trees, wherein the EP generation rate depends only on the
tree height. Owing to this reason, the maximum achievable
path length graph is close to a step function. We add that
our schemes produce 0.008 EPs/s for distance of more than
4000 km.
Finally, in Fig. 10(d), we demonstrate the higher per-

formance of nonbalanced trees when the links on a path
may have much different lengths. In particular, we pick link
lengths randomly in the range of 10–50 km. With this set-
ting, we see that DP-Approx performs much better than
Balanced-Tree and, in some cases, up to 100% better.
Note that Balanced-Tree and Caleffi have similar
performance over linear graphs, as there is no path selection
scheme needed.

H. VALIDATING THE ANALYSIS: FAIRNESS
Fig. 11(a) compares the EP generation rates as measured by
the analytical formulae and the actual simulations for the
QNR-SP algorithms DP-Approx and Balanced-Tree.
We observe that they match closely, validating our assump-
tion of 3/2 factor in (1) and of exponential distributions at
higher levels of the tree, and of the path metric M() for
Balanced-Tree. Fig. 11(b) and (c) plots the EP genera-
tion rates for throttled and nonthrottled trees. We see that the
throttled tree underperforms the nonthrottled tree by only a

4100420 VOLUME 3, 2022

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION Engineeringuantum
Transactions onIEEE

small margin for the single-tree case; however, for the multi-
tree ITER-Bal algorithm, the throttled trees perform better
as they are able to use the resources efficiently. Fig. 11(d)
plots the average number of (s, d) pairs that get at least one
tree/path for varying number of requests; we see that our
schemes exhibit 90–99% fairness.

I. EXECUTION TIMES
We ran our simulations on an Intel i7-8700 CPU machine
and observed that the WaitLess algorithms as well our
Balanced-Tree and ITER-Bal heuristics run in frac-
tion of a second even for a 500-node network; thus, they can
be used in real time. Note that since our problems depend on
real-time network state (residual capacities), the algorithms
must run very fast. The other algorithms (viz., DP-OPT,
DP-Approx, and ITER-DPA) can take minutes to hours on
large networks and, hence, may be impractical on large net-
work without significant optimization and/or parallelization.
See Appendix G for the plot.

VIII. CONCLUSION
In this article, we designed techniques for an efficient gen-
eration of EP to facilitate QN communication, by selecting
efficient swapping trees in a Waiting protocol. By exten-
sive simulations, we demonstrated the effectiveness of our
techniques and their viability in generating high-fidelity EP
over long distances (500–1000 km). Our future work is fo-
cused on exploring more sophisticated generation structures,
e.g., aggregated trees, taking advantage of pipelining across
rounds, incorporating purification techniques, and extending
our techniques to multimode memories [51], [52].

APPENDIX A
LP FORMULATION FOR THE QNR PROBLEM
In this appendix, we provide an optimal LP-based solution to
the QNR problem. Although polynomial time, this solution
has high complexity, so its main use is as a benchmark in
evaluating the more efficient (but possibly suboptimal) algo-
rithms for the problem.
Our approach follows from the observation that each

swapping tree in a QN can be viewed as a special kind of
path (calledB-hyperpath [53]) over a hypergraph constructed
from the network graph. We begin by describing the hy-
pergraph construction for the single-pair case and ignoring
fidelity constraints. We then extend traditional hypergraph
flow algorithm to incorporate losses (e.g., due to BSM fail-
ures), stochasticity, and the interaction betweenmemory con-
straints and stochasticity. Finally, we extend the formulation
to multiple (s, d) pairs and incorporate fidelity constraints.

The optimal generation of long-distance entanglement was
posed as an LP problem in [54], but differs from our more
general formulation work in three main ways. First of all,
Dai et al. [54] assume unbounded memory capacity at each
swapping node to queue up incoming EPs. In contrast, our
model has bounded memory capacity at each node, and con-
sequently, our LP formulation deals with expectations over

FIGURE 12. ST-hypergraph for a four-node linear network. Not all prod
nodes are shown.

rates/latencies rather than scalar rate values. Second, our for-
mulation accounts for node capacity constraints in addition
to link constraints. Third, our formulation poses the problem
in terms of hypergraph flows, which permits us to easily
incorporate fidelity and decoherence constraints.

A. HYPERGRAPH-BASED REPRESENTATION OF
ENTANGLEMENT GENERATION
We begin by recalling standard hypergraph notions [53],
[55], [56].
Definition 2 (Hypergraph): A directed hypergraph H =

(V (H), E(H)) has a set of vertices V (H) and a set of
(directed) hyperarcs E(H), where each hyperarc e is a
pair (t(e), h(e)) of nonempty disjoint subsets of V (H). A
weighted hypergraph is additionally equipped with a weight
function ω : E(H) → R+.
Sets t(e) and h(e) are called the tail and head, respectively,

of hyperarc (t(e), h(e)). A hyperarc e is a trivial edge if
both t(e) and h(e) are singleton and nontrivial otherwise. A
hyperarc e, where |h(e)| = 1, i.e., whose head is singleton,
is called a B-arc. A hypergraph consisting only of B-arcs is
called a B-hypergraph.
Definition 3 (Connectivity and B-hyperpaths): A vertex t

is B-connected to vertex s in hypergraph H if s = t or there
is a hyperarc e ∈ E(H) such that h(e) = {t} and every v ∈
t(e) is B-connected to s in H. A B-hyperpath from s to t is
a minimal B-hypergraph P such that V (P) ⊆ V (H), E(P) ⊆
E(H), and t is B-connected to s in P.
ST-hypergraph: Given a QN and single (s, d) pair, we first

construct a hypergraph that represents the set of all possible
swapping trees rooted at (s, d). Given a QN represented as
an undirected graph G = (V,E) and a single (s, d) pair, its
ST-hypergraph is a hypergraphH constructed as follows (see
Fig. 12). All pairs of the following vertices are unordered
pairs.

VOLUME 3, 2022 4100420

Engineeringuantum
Transactions onIEEE

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION

1) V (H) consists of:
a) two distinguished vertices start and term;
b) prod(u, v) and avail(u, v) for all distinct u, v ∈

V .
2) E(H) consists of five types of hyperarcs.

a) [Start] e = ({start}, {avail(u, v)}) ∀u, v ∈ V .
b) [Swap] e = ({avail(u,w), avail(w, v)}, {prod(u,

v)}), for all distinct u, v,w ∈ V .
c) [Prod] e = ({prod(u, v)}, {avail(u, v)}) ∀u, v ∈

V .
d) [Term] e = ({avail(s, d)}, {term}).

In an ST-hypergraph, vertices start and term represent
source and sink nodes of a desired hypergraph flow (see the
following). Other vertices represent EPs over a pair of nodes
in G. Hyperarcs represent how the tail EPs contribute to that
at the head. For ease of accounting, we categorize gener-
ated EPs using different types of vertices: start represents
link-level EPs generated over links inG, prod represents EPs
produced by atomic ES, and avail represents EPs generated
from either of the above. “Start” and “Prod” arcs turn the
start and prod EPs, respectively, into avail EPs and, thus,
make them available for further swapping. “Swap” arcs rep-
resent swapping over the triplets of nodes (u,w, v). Note that
an ST-hypergraph is a B-hypergraph, as “Swaps” are the only
nontrivial hyperarcs, and their head is singleton.
Swapping trees as B-hyperpaths: Given a QNR problem

with a single pair (s, d), it is easy to see that any swapping
tree generating (s, t) EPs can be represented by a unique
B-hyperpath from start to term in the above ST-hypergraph.
Thus, it easily follows that a QNR problem of selection of
(multiple) swapping trees is equivalent to finding an optimal
hypergraph flow from start to term in H. Note that H has
O(|V |2) vertices and O(|V 3|) hyperarcs.

B. ENTANGLEMENT FLOW AS LP

We now develop an LP formulation to represent the QNR
problem over (s, d) in G as a hypergraph flow problem in H.
In contrast to the classic hypergraph flow formulation [53],
we need to consider lossy flow, with loss arising from two
sources: 1) ES operations have a given success probability,
and 2) waiting for both qubits to arrive before performing
ES leads to losses since the arrival of EPs follow indepen-
dent probability distributions. For the latter, we make use of
Observation 1. The proposed LP formulation is as follows.

1) Variables: za, for each hyperarc a in H, represents the
EP generation rate over each of the (one or two) node
pairs in a’s tail. This enforces the condition that EP
rates over the two node pairs in prod hyperarc’s tail
are equal. Thus, the LP solution will result in throttled
swapping trees.

2) Capacity constraints: za ∈ R+ for all hyperarcs a in
H. We use (2) to add the following constraints due to

nodes in G:

1/tg ≥
∑
x∈E(i)

za(x)/(pg
2pe

2pob) ∀i ∈ V.

Above a(x) is the hyperarc in H of the form
(start, avail(x)), where x is an edge in G.

3) Flow constraints that vary with vertex types. In the
following, we use notations out(v) and in(v) to rep-
resent outgoing and incoming hyperarcs from v. For-
mally, out(v) is {a ∈ E(H) : v ∈ t(a)} and in(v) is {a ∈
E(H) : v ∈ h(a)}.

1) For each vertex v s.t. v = avail(·):∑
a∈in(v)

za =
∑

a′∈out(v)
za′ .

That is, there is no loss in making already gen-
erated entanglements available for further swap-
ping.

2) For each vertex v s.t. v = prod(·)∑
a∈in(v)

zapb(2/3) =
∑

a′∈out(v)
za′ .

The (2/3)pb factor follows from Observation 1
and accounts for loss due to swapping failures as
well as due to waiting for the arrival of both EPs
for swapping.

4) Objective: Maximize
∑

a∈in(term) za.

Multiple-pair multipath: The above LP formulation for
the single-pair QNR problem can be readily extended to the
multiple-pair case. Let {(s1, d1), (s2, d2), . . . , (sn, dn)} be a
set of source–destination pairs. The only change is that the
hypergraph H now has n arcs ({avail(si, di)}, {term}) for all
i. The other arcs model the generation of EPRs indepen-
dent of the pairs and, thus, are unchanged. It is interesting
to note that the multipair problem, typically formulated as
multicommodity flow in classical networks, is posed here as
single-commodity flow over hypergraphs.

C. FIDELITY
Constraints on loss of fidelity due to noisy BSM operations
and from decoherence due to the age of qubits can be added
to the LP formulation, as follows. Recall that the constraint
on operation-based fidelity loss is modeled by limiting the
number leaves of the swapping tree, and in Section IV-B, we
formulated the decoherence constraint by limiting the heights
of the left-most and right-most descendants of the root’s
children. These structural constraints on swapping trees can
be lifted to the LP formulation by 1) adding the leaf count
and heights as parameters to prod and avail vertices and
2) swapping the EPs generated from only the compatible
vertices.
In particular, we generalize the ST-hypergraph to a

fidelity-constrained one called H (F), where the prod
and avail vertices are parameterized by u, v ∈ V , and
in addition by (n, h), where n is the number of leaves and

4100420 VOLUME 3, 2022

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION Engineeringuantum
Transactions onIEEE

h = (hll, hlr, hrl, hrr) represents the depths of left-most
and right-most descendants of the root’s children, of
the trees rooted at (u, v) with those parameter values.
In terms of edges, the most interesting difference H (F)

and H is in “Swap” edges. In H (F), “Swap” edges are
({avail(u,w, n′, h′)avail(w, v, n′′, h′′)},{prod(u, v, n, h)})
only if n = n′ + n′′, and h, h′, h′′ are such that hll = h′

ll + 1,
hlr = h′

rr + 1, hrl = h′′
ll + 1, and hrr = h′′

rr + 1. The above
constraints ensure that only compatible subtrees are com-
posed into bigger trees. The other changes are for bookkeep-
ing: “Gen” are from gen(u, v) to avail(u, v, 1, (0, 0, 0, 0));
“Prod” are from prod(u, v, n, h) to avail(u, v, n, h); and
finally “Term” are from avail(s, t, n, h) to term for n ≤ τl
and h such that f (h) ≤ τd ; here, f (h) gives the tree’s age
based on h values (following Section IV-B) while using the
link rates based on 50% node capacity usage.

APPENDIX B
PROOF OF THEOREM 1
Proof (sketch):We provide a main intuition behind the claim
in Theorem 1. The key claim is that at any instant, the Wait-
Less protocol generates an EP and the Waiting protocol
will also be able to generate an EP. Consider an instant t in
time when the WaitLess protocol X generates an EP, as
a result of all the underlying processes succeeding at time
t. Right before time t, consider the state of the EPs in the
swapping tree T of the Waiting protocol Y : Essentially,
some of the nodes in T have (generated) EPs that are waiting
for their sibling EP to be generated; note that these generated
EPs have not aged yet, else they would have been already
discarded by Y . Now, at time t, during X’s execution, all the
underlying processes succeed instantly—it is easy to see that
in the protocol Y too, all the ungenerated EP would now be
generated instantly11—yielding a full EP at the root (using
qubits that have not aged beyond the threshold). Finally, since
the number of operations in T is the same as the number
of BSM operations incurred by X to generate an EP, the
fidelity degradation due to operations is the same in both the
protocols.

APPENDIX C
PROOF OF LEMMA 1
Proof:We first prove the claim that given any swapping tree
Txy over a path P : x� w � y, there exists a swapping tree
Txw over a path P′ : x� w such that P′ is a subset of P and
generation latency of Txw is less than that of Txy. This claim
can be easily proved by induction as follows. Consider the
following cases.

1) w is the root of Txy, in which case Txw is the left child
of the root.

11Here, we have implicitly assumed that if n BSM operations succeed
in X protocol at some instant t, then at the same instant, n BSM operations
anywhere in Y will also succeed.

TABLE I Execution Times of the QNR-SP Algorithm Over Small Networks

2) i andw have a common ancestor a that is other than the
root of Txy. In this case, a = w, and the subtree rooted
at a = w is the required Txw.

3) The only common ancestor of i and w is the root a of
Txw, which is not w. In this case, we apply the induc-
tive hypothesis on right subtree Tay of Txy, to extract a
subtree Taw, which along with the left right subtree Tia
of Txy gives the required subtree Txw. This proves the
above claim.

Now, to prove the lemma, let us consider the swapping
trees Tik and Tk j given to us. By the above claim, there are
swapping trees Tiv and Tv j, which will satisfy the require-
ments of the given lemma’s claim.

APPENDIX D
PROOF OF THEOREM 2
Proof: We show that T [i, j, h, ui, u j] is indeed the optimal
latency over the nodes (i, j) using a throttled swapping tree of
height at most h and with u j and u j as the usage percentages
at nodes i and j. We use proof by induction over h. The base
case is obvious. The inductive hypothesis is that the above
statement is true for all heights ≤ (h− 1). Now, let T be an
optimal-latency swapping tree of height at most h between a
pair of nodes (i, j), for some height greater than 1, and node
usage percentages at i and j of ui and u j respectively. Let the
expected latency of T be L. Let the two children subtrees of
the root of T be T1 and T2, each of latency Lc; note that,
as T is throttled, the expected latencies of T1 and T2 are
equal. Thus, we have Lc = (32L+ tc + tb)/pb) by (1). Note
that T1 and T2 are of heights at most h− 1, and without loss
of generality, we can assume T1 and T2 to be disjoint (as per
Lemma 1). Let T1 and T2 be between the pairs of nodes (i, k)
and (k, j) with end node usage percentages of (ui, uk) and
(u′
k, u j), respectively. Now, optimal throttled trees over (i, k)

and (k, j) must have a latency of at most that of T1 and T2,
i.e., Lc. Finally, by (4) and the inductive hypothesis, we have
that T [i, j, h, ui, u j] (and throttled) will be at most L.

APPENDIX E
EXECUTION TIMES OF CALEFFI [18] ALGORITHM
Here, we give the execution times of different algorithms es-
pecially Caleffi’s for small networks of 10–20 nodes (see
Table I). We see that Balanced-Tree and DP-Approx
take fractions of a second, while DP-OPT takes up to 2 s.
However, as expected, Caleffi’s execution time increases

VOLUME 3, 2022 4100420

Engineeringuantum
Transactions onIEEE

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION

FIGURE 13. Compare the performance with Caleffi relative to DP-OPT
(the closer to 1, the better).

exponentially with the increase in the number of nodes—
with 20-node network taking more than 10 h. In the fol-
lowing, we further estimate Caleffi’s execution time for
larger graphs.
Rough estimate of Caleffi’s execution time for large

graphs. Consider an n-node network with an average node
degree of d. Consider a node pair (s, d). We try to estimate
the number of paths from s to d—the goal here is merely
to show that the number is astronomical for n = 100, and
thus, our analysis is very approximate (more accurate analy-
sis seems beyond the scope of this article). Let P(l) be the
number of simple paths from s to a node x in the graph
of length at most l. For large graphs and large l, we can
assume P(l) to be roughly same for all x. We estimate that
P(l + 1) = P(l) + P(l) ∗ 6 ∗ (1 − l/n). The first term is to
count paths of length at most l − 1; in the second term, the
factor 6 comes from the fact that the destination x has six
neighbors and the factor (1 − l/n) is the probability that a
path counted in P(l) does not contain x (to constrain the
paths to be simple, i.e., without cycles). Using P(), the ex-
ecution time of Caleffi can be roughly estimated to be at
least P(n− 1) ∗ 500/(5 ∗ 109) s, where the factor 500 is a
conservative estimate of the number of instructions used in
computing the latency for a path and 5 × 109 is the number of
instructions a 5-GHz machine can execute in a second. The
above yields executions times of a few seconds for n = 15,
about an hour for n = 20, about 350 hour for n = 25, 1016

hour for n = 50, and 1044 hour for n = 100. The above es-
timates for n = 15–20 are within an order of magnitude of
our actual execution times and, thus, validate our estimation
approach.

APPENDIX F
COMPARISON WITH Caleffi: MORE DETAILS
Fig. 9 shows that DP-OPT outperforms Caleffi by a mar-
gin of around 10% when averaging multiple experiments.
However, when we look at one experiment at a time and
compute the Caleffi’s performance relative to DP-OPT
for each experiment, we see a larger difference between DP-
OPT and Caleffi. Fig. 13 plots the error bar of the relative

FIGURE 14. Execution time comparison of various algorithms for
QNR-SP and QNR algorithms.

performance of three algorithms compared to DP-OPT at
each experiment. The lower cap of Caleffi at 0.2 atomic
BSM success rate is 0.35, which means that at an extreme
sample, the DP-OPT is almost 300% better than Caleffi.
In that extreme sample, the number of hops between the
source and the destination is large (thus, the overall EP rate
is small, which affects little when averaging with other ex-
periments in Fig. 9). Moreover, we observe that the larger
the number of hops between the source and the destination,
the larger the gap of relative performance between DP-OPT
and Caleffi. This observation aligns with what is shown
in Fig. 7(b): our DP-OPT has an larger advantage in ratio
when the source and destination are far away.

APPENDIX G
EXECUTION TIMES PLOT
We give here the plot for execution times of various schemes
(see Fig. 14).

REFERENCES
[1] F. Arute et al., “Quantum supremacy using a programmable

superconducting processor,” Nature, vol. 574, pp. 505–510, 2019,
doi: 10.1038/s41586-019-1666-5.

[2] J. Gambetta, “IBM’s roadmap for scaling quantum technology,”
2020. [Online]. Available: https://www.ibm.com/blogs/research/
2020/09/ibm-quantum-roadmap/

[3] M. Caleffi, A. S. Cacciapuoti, and G. Bianchi, “Quantum Internet:
From communication to distributed computing!,” in Proc. 5th
ACM Int. Conf. Nanoscale Comput. Commun., 2018, pp. 1–4,
doi: 10.1145/3233188.3233224.

[4] C. Simon, “Towards a global quantum network,” Nature Photon., vol. 11,
no. 11, pp. 678–680, 2017, doi: 10.1038/s41566-017-0032-0.

[5] Z. Eldredge, M. Foss-Feig, J. A. Gross, S. L. Rolston, and A. V. Gor-
shkov, “Optimal and secure measurement protocols for quantum sen-
sor networks,” Phys. Rev. A, vol. 97, no. 4, 2018, Art. no. 042337,
doi: 10.1103/PhysRevA.97.042337.

[6] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütken-
haus, and M. Peev, “The security of practical quantum key distri-
bution,” Rev. Modern Phys., vol. 81, no. 3, pp. 1301–1350, 2009,
doi: 10.1103/RevModPhys.81.1301.

[7] P. Kómár et al., “A quantum network of clocks,” Nature Phys., vol. 10,
no. 8, pp. 582–587, 2014, doi: 10.1038/nphys3000.

[8] T.-Y. Chen et al., “Field test of a practical secure communication net-
work with decoy-state quantum cryptography,” Opt. Exp., vol. 17, no. 8,
pp. 6540–6549, 2009, doi: 10.1364/OE.17.006540.

[9] M.Marcozzi and L. Mostarda, “Quantum consensus: An overview,” 2021,
arXiv:2101.04192, doi: 10.48550/arXiv.2101.04192.

4100420 VOLUME 3, 2022

https://dx.doi.org/10.1038/s41586-019-1666-5
https://www.ibm.com/blogs/research/penalty -@M 2020/09/ibm-quantum-roadmap/
https://www.ibm.com/blogs/research/penalty -@M 2020/09/ibm-quantum-roadmap/
https://dx.doi.org/10.1145/3233188.3233224
https://dx.doi.org/10.1038/s41566-017-0032-0
https://dx.doi.org/10.1103/PhysRevA.97.042337
https://dx.doi.org/10.1103/RevModPhys.81.1301
https://dx.doi.org/10.1038/nphys3000
https://dx.doi.org/10.1364/OE.17.006540
https://dx.doi.org/10.48550/arXiv.2101.04192

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION Engineeringuantum
Transactions onIEEE

[10] D. Dieks, “Communication by EPR devices,” Phys. Lett. A, vol. 92, no. 6,
pp. 271–272, Nov. 1982, doi: 10.1016/0375-9601(82)90084-6.

[11] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.
K. Wootters, “Teleporting an unknown quantum state via dual classical
and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett., vol. 70, no. 13,
pp. 1895–1899, 1993, doi: 10.1103/PhysRevLett.70.1895.

[12] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quan-
tum communication with atomic ensembles and linear optics,” Nature,
vol. 414, no. 6862, pp. 413–418, 2001, doi: 10.1038/35106500.

[13] N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, “Quantum re-
peaters based on atomic ensembles and linear optics,” Rev. Modern Phys.,
vol. 83, no. 1, pp. 33–80, 2011, doi: 10.1103/RevModPhys.83.33.

[14] S. Shi and C. Qian, “Concurrent entanglement routing for quantum net-
works: Model and designs,” in Proc. Annu. Conf. ACM Special Int. Group
Data Commun. Appl., Technol., Archit., Protoc. Comput. Commun., 2020,
pp. 62–75, doi: 10.1145/3387514.3405853.

[15] K. Chakraborty, D. Elkouss, B. Rijsman, and S. Wehner, “Entanglement
distribution in a quantum network: A multicommodity flow-based ap-
proach,” IEEE Trans. Quantum Eng., vol. 1, 2020, Art. no. 4101321,
doi: 10.1109/TQE.2020.3028172.

[16] M. Pant et al., “Routing entanglement in the quantum internet,”NPJQuan-
tum Inf., vol. 5, no. 1, pp. 1–9, 2019, doi: 10.1038/s41534-019-0139-x.

[17] K. Chakraborty, F. Rozpedek, A. Dahlberg, and S. Wehner, “Dis-
tributed routing in a quantum internet,” 2019, arXiv:1907.11630,
doi: 10.48550/arXiv.1907.11630.

[18] M. Caleffi, “Optimal routing for quantum networks,” IEEE Access, vol. 5,
pp. 22 299–22 312, 2017, doi: 10.1109/ACCESS.2017.2763325.

[19] O. Gühne and G. Tóth, “Entanglement detection,” Phys. Rep., vol. 474,
nos. 1–6, pp. 1–75, 2009, doi: 10.1016/j.physrep.2009.02.004.

[20] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,”
Nature, vol. 299, pp. 802–803, 1982, doi: 10.1038/299802a0.

[21] S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang,
“Optimal architectures for long distance quantum communication,” Sci.
Rep., vol. 6, no. 1, 2016, Art. no. 20463, doi: 10.1038/srep20463.

[22] S. J. Devitt, W. J. Munro, and K. Nemoto, “Quantum error correction for
beginners,” Rep. Prog. Phys., vol. 76, no. 7, Jun. 2013, Art. no. 076001,
doi: 10.1088/0034-4885/76/7/076001.

[23] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters:
The role of imperfect local operations in quantum communication,”
Phys. Rev. Lett., vol. 81, pp. 5932–5935, Dec. 1998, doi: 10.1103/Phys-
RevLett.81.5932.

[24] J. Roffe, “Quantum error correction: An introductory guide,” Contempo-
rary Phys., vol. 60, no. 3, pp. 226–245, Jul. 2019, doi: 10.1080/00107514.
2019.1667078.

[25] D. Press et al., “Ultrafast optical spin echo in a single quantum dot,”Nature
Photon., vol. 4, no. 6, pp. 367–370, 2010, doi: 10.1038/nphoton.2010.83.

[26] H. Wang et al., “Towards optimal single-photon sources from polar-
ized microcavities,” Nature Photon., vol. 13, no. 11, pp. 770–775, 2019,
doi: 10.1038/s41566-019-0494-3.

[27] Y. Sagi, I. Almog, and N. Davidson, “Process tomography of dynamical
decoupling in a dense cold atomic ensemble,” Phys. Rev. Lett., vol. 105,
Jul. 2010, Art. no. 0 53201, doi: 10.1103/PhysRevLett.105.053201.

[28] E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and
A. Rauschenbeutel, “Optical interface created by laser-cooled atoms
trapped in the evanescent field surrounding an optical nanofiber,” Phys.
Rev. Lett., vol. 104, May 2010, Art. no. 203603, doi: 10.1103/Phys-
RevLett.104.203603.

[29] C. Deutsch et al., “Spin self-rephasing and very long coherence times
in a trapped atomic ensemble,” Phys. Rev. Lett., vol. 105, Jul. 2010,
Art. no. 020401, doi: 10.1103/PhysRevLett.105.020401.

[30] C. Langer et al., “Long-lived qubit memory using atomic ions,” Phys.
Rev. Lett., vol. 95, Aug. 2005, Art. no. 060502, doi: 10.1103/Phys-
RevLett.95.060502.

[31] P. Wang et al., “Single ion qubit with estimated coherence time exceed-
ing one hour,” Nature Commun., vol. 12, no. 1, 2021, Art. no. 233,
doi: 10.1038/s41467-020-20330-w.

[32] M. K. Bhaskar et al., “Experimental demonstration of memory-enhanced
quantum communication,” Nature, vol. 580, no. 7801, pp. 60–64, 2020,
doi: 10.1038/s41586-020-2103-5.

[33] W. Tittel et al., “Photon-echo quantum memory,” 2008, arXiv:0810.0172,
doi: 10.48550/arXiv.0810.0172.

[34] J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped
light with storage times greater than one second using electromagnetically
induced transparency in a solid,” Phys. Rev. Lett., vol. 95, no. 6, 2005,
Art. no. 063601, doi: 10.1103/PhysRevLett.95.063601.

[35] E. Fraval, M. J. Sellars, and J. J. Longdell, “Dynamic decoherence control
of a solid-state nuclear-quadrupole qubit,” Phys. Rev. Lett., vol. 95, no. 3,
2005, Art. no. 030506, doi: 10.1103/PhysRevLett.95.030506.

[36] M. Steger et al., “Quantum information storage for over 180 s using donor
spins in a 28Si “semiconductor vacuum”,” Science, vol. 336, no. 6086,
pp. 1280–1283, 2012, doi: 10.1126/science.1217635.

[37] K. Saeedi et al., “Room-temperature quantum bit storage exceeding 39
minutes using ionized donors in silicon-28,” Science, vol. 342, no. 6160,
pp. 830–833, 2013, doi: 10.1126/science.1239584.

[38] M. Zhong et al., “Optically addressable nuclear spins in a solid with a
six-hour coherence time,” Nature, vol. 517, no. 7533, pp. 177–180, 2015,
doi: 10.1038/nature14025.

[39] K. Azuma, K. Tamaki, and H.-K. Lo, “All-photonic quantum re-
peaters,” Nature Commun., vol. 6, no. 1, 2015, Art. no. 6787,,
doi: 10.1038/ncomms7787.

[40] T. Coopmans, S. Brand, and D. Elkouss, “Improved analytical bounds
on delivery times of long-distance entanglement,” Phys. Rev. A, vol. 105,
Jan. 2022, Art. no. 012608, doi: 10.1103/PhysRevA.105.012608.

[41] B. Li, T. Coopmans, and D. Elkouss, “Efficient optimization of cut-offs
in quantum repeater chains,” in Proc. IEEE Int. Conf. Quantum Comput.
Eng., 2020, pp. 158–168, doi: 10.1109/QCE49297.2020.00029.

[42] L. Jiang, J. M. Taylor, N. Khaneja, and M. D. Lukin, “Optimal
approach to quantum communication using dynamic programming,”
Proc. Nat. Acad. Sci., USA, vol. 104, no. 44, pp. 17291–17296, 2007,
doi: 10.1073/pnas.0703284104.

[43] A. Dahlberg et al., “A link layer protocol for quantum networks,” in
Proc. ACM Special Int. Group Data Commun., 2019, pp. 159–173,
doi: 10.1145/3341302.3342070.

[44] W. Kozlowski, A. Dahlberg, and S. Wehner, “Designing a quantum net-
work protocol,” in Proc. 16th Int. Conf. Emerg. Netw. Experiments Tech-
nol., 2020, pp. 1–16, doi: 10.1145/3386367.3431293.

[45] L. Bugalho, B. C. Coutinho, and Y. Omar, “Distributing multipartite en-
tanglement over noisy quantum networks,” 2021, arXiv:2103.14759.

[46] T. Coopmans et al., “NetSquid, a discrete-event simulation platform
for quantum networks,” Commun. Phys., vol. 4, 2021, Art. no. 164,
doi: 10.1038/s42005-021-00647-8.

[47] B. M. Waxman, “Routing of multipoint connections,” IEEE J.
Sel. Areas Commun., vol. 6, no. 9, pp. 1617–1622, Dec. 1988,
doi: 10.1109/49.12889.

[48] P. van Loock et al., “Extending quantum links: Modules for fiber- and
memory-based quantum repeaters,” Adv. Quantum Technol., vol. 3, no. 11,
2020, Art. no. 1900141, doi: 10.1002/qute.201900141.

[49] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and
W. K. Wootters, “Purification of noisy entanglement and faithful telepor-
tation via noisy channels,” Phys. Rev. Lett., vol. 76, no. 5, pp. 722–725,
1996, doi: 10.1103/PhysRevLett.76.722.

[50] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters,
“Mixed-state entanglement and quantum error correction,” Phys. Rev. A,
vol. 54, no. 4, pp. 3824–3851, 1996, doi: 10.1103/PhysRevA.54.3824.

[51] C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden,
and N. Gisin, “Quantum repeaters with photon pair sources and multi-
mode memories,” Phys. Rev. Lett., vol. 98, May 2007, Art. no. 190503,
doi: 10.1103/PhysRevLett.98.190503.

[52] O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “Multi-
plexed memory-insensitive quantum repeaters,” Phys. Rev. Lett., vol. 98,
Feb. 2007, Art. no. 060502, doi: 10.1103/PhysRevLett.98.060502.

[53] I. Beckenbach, “Matchings and flows in hypergraphs,” Ph.D. dissertation,
Dept. Math. Informat., Freie Univ., Berlin, Germany, 2019.

[54] W. Dai, T. Peng, and M. Z. Win, “Optimal remote entanglement distribu-
tion,” IEEE J. Sel. Areas Commun., vol. 38, no. 3, pp. 540–556,Mar. 2020,
doi: 10.1109/JSAC.2020.2969005.

[55] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen, “Directed hypergraphs
and applications,” Discrete Appl. Math., vol. 42, nos. 2/3, pp. 177–201,
1993, doi: 10.1016/0166-218X(93)90045-P.

[56] M. Thakur and R. Tripathi, “Linear connectivity problems in directed
hypergraphs,” Theor. Comput. Sci., vol. 410, nos. 27–29, pp. 2592–2618,
2009, doi: 10.1016/j.tcs.2009.02.038.

VOLUME 3, 2022 4100420

https://dx.doi.org/10.1016/0375-9601(82)90084-6
https://dx.doi.org/10.1103/PhysRevLett.70.1895
https://dx.doi.org/10.1038/35106500
https://dx.doi.org/10.1103/RevModPhys.83.33
https://dx.doi.org/10.1145/3387514.3405853
https://dx.doi.org/10.1109/TQE.2020.3028172
https://dx.doi.org/10.1038/s41534-019-0139-x
https://dx.doi.org/10.48550/arXiv.1907.11630
https://dx.doi.org/10.1109/ACCESS.2017.2763325
https://dx.doi.org/10.1016/j.physrep.2009.02.004
https://dx.doi.org/10.1038/299802a0
https://dx.doi.org/10.1038/srep20463
https://dx.doi.org/10.1088/0034-4885/76/7/076001
https://dx.doi.org/10.1103/PhysRevLett.81.5932
https://dx.doi.org/10.1103/PhysRevLett.81.5932
https://dx.doi.org/10.1080/00107514.penalty -@M 2019.1667078
https://dx.doi.org/10.1080/00107514.penalty -@M 2019.1667078
https://dx.doi.org/10.1038/nphoton.2010.83
https://dx.doi.org/10.1038/s41566-019-0494-3
https://dx.doi.org/10.1103/PhysRevLett.105.053201
https://dx.doi.org/10.1103/PhysRevLett.104.203603
https://dx.doi.org/10.1103/PhysRevLett.104.203603
https://dx.doi.org/10.1103/PhysRevLett.105.020401
https://dx.doi.org/10.1103/PhysRevLett.95.060502
https://dx.doi.org/10.1103/PhysRevLett.95.060502
https://dx.doi.org/10.1038/s41467-020-20330-w
https://dx.doi.org/10.1038/s41586-020-2103-5
https://dx.doi.org/10.48550/arXiv.0810.0172
https://dx.doi.org/10.1103/PhysRevLett.95.063601
https://dx.doi.org/10.1103/PhysRevLett.95.030506
https://dx.doi.org/10.1126/science.1217635
https://dx.doi.org/10.1126/science.1239584
https://dx.doi.org/10.1038/nature14025
https://dx.doi.org/10.1038/ncomms7787
https://dx.doi.org/10.1103/PhysRevA.105.012608
https://dx.doi.org/10.1109/QCE49297.2020.00029
https://dx.doi.org/10.1073/pnas.0703284104
https://dx.doi.org/10.1145/3341302.3342070
https://dx.doi.org/10.1145/3386367.3431293
https://dx.doi.org/10.1038/s42005-021-00647-8
https://dx.doi.org/10.1109/49.12889
https://dx.doi.org/10.1002/qute.201900141
https://dx.doi.org/10.1103/PhysRevLett.76.722
https://dx.doi.org/10.1103/PhysRevA.54.3824
https://dx.doi.org/10.1103/PhysRevLett.98.190503
https://dx.doi.org/10.1103/PhysRevLett.98.060502
https://dx.doi.org/10.1109/JSAC.2020.2969005
https://dx.doi.org/10.1016/0166-218X(93)90045-P
https://dx.doi.org/10.1016/j.tcs.2009.02.038

Engineeringuantum
Transactions onIEEE

Ghaderibaneh et al.: EFFICIENT QUANTUM NETWORK COMMUNICATION

MOHAMMAD GHADERIBANEH received the
B.S. degree in electrical engineering from Islamic
Azad University, Urmia, Iran, in 2008, and the
M.S. degree in telecommunication engineering
from Shahid Beheshti University, Tehran, Iran, in
2011. He is currently working toward the Ph.D.
degree in computer science with Stony Brook
University, Stony Brook, NY, USA.

From 2012 to 2018, he was a Software
and Telecommunication Engineer and developed
wireless communication networks such as Terres-

trial Trunked Radio. In 2022, he was an intern with Google as a Software
Engineer and designed a machine learning model to improve YouTube’s re-
view process. His research interests include quantum networks and machine
learning application in wireless networks.

CAITAO ZHAN received the B.S. degree in com-
puter science and technology from the ChinaUni-
versity of Geosciences, Wuhan, China, in 2017.
He is currently working toward the Ph.D. degree
with the Department of Computer Science, Stony
Brook University, Stony Brook, NY, USA.

He does research in the broad area of com-
puter networks. His research interests include the
intersection of wireless networks and machine
learning, quantum communication, and quantum
sensing.

HIMANSHU GUPTA received the B.Tech.
degree in computer science and engineering
from the Indian Institute of Technology Bombay,
Mumbai, India, in 1992, and the M.S. and Ph.D.
degrees in computer science from Stanford Uni-
versity, Stanford, CA, USA, in 1999.

He is currently a Professor of computer science
with Stony Brook University, Stony Brook, NY,
USA, where he has been a faculty since 2002.
His recent research interests have included wire-
less networks, with a focus on free-space optical

communication networks and spectrum management. His current research
interests include quantum networks and communication, and distributed
quantum algorithms.

C. R. RAMAKRISHNAN received the M.Sc.
(Tech.) degree from the Birla Institute of Tech-
nology and Science, Pilani, India, in 1987, and the
Ph.D. degree from Stony Brook University, Stony
Brook, NY, USA, in 1995, both in computer sci-
ence.

He is currently a Professor of computer sci-
ence with Stony Brook University, where he
has been a faculty since 1997. His recent
research interests have included logic program-
ming and verification, with a focus on analyz-

ing properties of probabilistic programming. His current research interests
include quantum networks and communication, and distributed quantum
algorithms.

4100420 VOLUME 3, 2022

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

