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ABSTRACT Shared spectrum systems facilitate spectrum allocation to unlicensed users without harming
the licensed users; they offer great promise in optimizing spectrum utility, but their management (in
particular, efficient spectrum allocation to unlicensed users) is challenging. To allocate spectrum efficiently
to secondary users (SUs) in general scenarios, we fundamentally need to have knowledge of the signal path-
loss function. In practice, however, even the best-known path-loss models have unsatisfactory accuracy, and
conducting extensive surveys to gather path-loss values is infeasible. Thus, the current allocation methods
are either (i) too conservative in preventing interference that they sacrifice performance, or (ii) are based
on imperfect propagation models and/or spectrum sensing with insufficient spatial granularity. This leads
to poor spectrum utilization, the fundamental objective of shared spectrum systems. In this work, we thus
propose to learn the spectrum allocation function directly using supervised learning techniques. Such an
approach has the potential to deliver near-optimal performance with sufficient and effective training data.
In addition, it has the advantage of being viable even when certain information is unavailable; e.g., in settings
where PUs’ information is not available, we make use of a crowdsourced sensing architecture and use
the spectrum sensor readings as features. In general, for spectrum allocation to a single SU, we develop
a CNN-based approach (called DeepAlloc) and address various challenges that arise in our context; to
handle multiple SU requests simultaneously, we extend our approach based on recurrent neural networks
(RNNs). Via extensive large-scale simulation and a small testbed, we demonstrate the effectiveness of our
developed techniques; in particular, we observe that our approach improves the accuracy of standard learning
techniques and prior work by up to 60%.

INDEX TERMS Spectrum sharing, spectrum allocation, deep learning, convolutional neural networks.

I. INTRODUCTION
The RF spectrum is a natural resource in great demand due
to the unabated increase in mobile (and hence, wireless)
data consumption [4]. The research community has addressed
this capacity crunch via the development of shared spectrum
paradigms, wherein the spectrum is made available to
unlicensed (Secondary) users as long as they do not interfere
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with the transmission of licensed incumbents, i.e., primary
users (PUs). Effective management (and in particular,
allocation) of spectrum in such shared spectrum systems is
challenging, and several spectrum management architectures
have been proposed over the years [7], [8], [26], [46].
A significant shortcoming of these architectures and methods
is that spectrum allocation is done very conservatively to
ensure correctness, or is based on imperfect propagation
modeling [11], [13] or spectrum sensing with poor spatial
granularity. This leads to poor spectrum utilization, the
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fundamental objective of the shared spectrum systems. In this
paper, we develop a learning-based approach to efficient
allocation of spectrum in such shared spectrum systems.

A. MOTIVATION AND OVERALL APPROACHS
In general, to allocate spectrum efficiently to secondary
users, we fundamentally need to have knowledge of the
signal path loss between largely arbitrary pair of points.
In practice, however, even the best known path-loss mod-
els [13], [33] have unsatisfactory accuracy, and conducting
extensive surveys to gather path-loss values are infeasible
and, moreover, may not even reflect real-time channel
conditions. To circumvent the above challenge, we propose to
instead learn the spectrum allocation function directly using
supervised learning techniques. In scenarios where primary-
user (PU) parameters may not be available (e.g., navy
radars in CBRS band [1]), we use a crowdsourced sensing
architecture where we utilize relatively low-cost spectrum
sensors independently deployed with a high granularity [10],
[12], [24], [43]. A sensing architecture also enables spectrum
allocation based on real-time channel conditions [16].
We propose to use supervised learning techniques to

learn the Spectrum Allocation (SA) function with the
input (features) being the primary-user parameters, spectrum
sensor (SS) readings, and secondary user (SU) request
parameters, and the output (label) being the maximum power
that can be allocated to the SU without resulting in any
harmful interference to the PUs’ receivers. Based on the
insight that the input to the SA function can be represented as
an image and thus the SA function can be framed as an image
regression problem, we develop a convolution neural network
(CNN) model to learn the allocation function as CNNs have
been most successful learning models for image regression
and classification tasks. To develop an effective CNN-based
learning architecture, we develop techniques to represent the
inputs to the SA function as an image, design an efficient
CNN architecture, and address associated challenges.

B. OUR CONTRIBUTIONS
We make the following contributions.

1) We motivate and propose using Convolution Neural
Networks (CNNs) for efficient learning of the spectrum
allocation function. In particular, we develop an
efficient CNN architecture based on pre-training a deep
model using many auto-generated samples/images,
followed by training using samples gathered over the
given region.

2) We develop a novel technique to represent the spectrum
allocation function input (i.e., the location and trans-
mission/received powers of primary users or spectrum
sensors, and the request parameters of the secondary
user) as an image; such an image representation is
essential to effectively use a CNN-based learning
model. In addition, we develop techniques to minimize
false positive errors, handle multi-path effects, and

further improve accuracy via synthetic samples, in our
context of a CNN-based learning approach.

3) To allocate spectrum simultaneously to multiple con-
current SUs, we develop a deep-learning architecture
based on recurrent neural networks (RNNs) with inputs
from our CNN-based architecture for single SUs.

4) We evaluate our techniques using large-scale simu-
lations and an outdoor testbed and demonstrate the
effectiveness of our developed techniques. We observe
that our approach improves the accuracy of other
approaches by up to 60%.

C. PAPER ORGANIZATION
The rest of the paper is organized as follows. In the
following section, we develop our spectrum allocation model
and setting, discuss related work, and give a high-level
overview of our approach. In §III, we develop our CNN-based
deep learning model and associated techniques for spectrum
allocation. We discuss our simulation results in §IV, and end
with concluding remarks in §VI.

II. MODEL, RELATED WORK, AND OUR APPROACH
Shared Spectrum and Entities: A shared spectrum sys-
tem mainly consists of licensed primary users (PUs) and
unlicensed secondary users (SUs) who make spectrum
allocation requests to the centralized spectrum manager.
A secondary user (SU) requests authorization to transmit
with certain desired parameters (e.g., location, duration,
frequency, transmission power). For a given SU request,
the spectrum manager determines whether the SU’s request
can be granted based on whether its transmission under
granted parameters would cause harmful interference to any
of the intended receivers of a PUs signal, as discussed
below. Additional entities in a shared spectrum system of
relevance to our model are PU receivers and spectrum
sensors, as described below.

PU Receivers (PURs). A way of modeling intended
receivers of a PU could be to define a coverage region around
PU wherein we wish to guarantee reception (see Fig. 1).

FIGURE 1. Eqn. (1) Illustration. The optimal power that can be allocated
to an SU is such that, at each PUR (a PU’s receiver) the signal-to-noise
ratio is more than the desired ratio, β. Above, Rj is a certain PUR, Ij is the
total interference at Rj from other PUs, sj is the signal strength received
at Rj from its PU, and 5 · ρ(l, lj ) is the interference due to the SU at Rj
where l and lj are their respective locations.
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In this work, as in [22] and [25], we model the intended
receivers of a PU as a finite set of receiver nodes, which we
denote as PURs. The PURmodel is without loss of generality
since, in general, the PURs can be distributed arbitrarily
around a PU. The PUR model is also more computationally
efficient than the coverage-region model in determining
whether an SU’s transmission causes harmful interference to
PU’s receivers. Later, we assume that the distribution method
for PURs is ‘‘similar’’ across all PUs, to obviate the need to
represent them explicitly in the SA’s input image (see §III-A
for more details).
Spectrum Allocation Objective: SU Transmission Power:

The general spectrum allocation problem is to allocate
optimal power to an SU’s request across spatial, frequency,
and temporal domains. We focus on the core function
approximation problem, which is to determine the optimal
power allocation to an SU for a given location, channel,
and time instant—since frequency and temporal domains
are essentially ‘‘orthogonal’’ dimensions of the problem and
thus can be easily handled independently (as done in §III-F).
We thus assume a single channel and instant for now, and
discuss multiple channels and request duration in §III-F.
Determining Optimal Power Allocation:Consider a shared

spectrum area with PUs deployed, and an SU request
for transmission from a given location l. If the PUs
information and the path-loss function are known, then the
optimal power that can be allocated to SU without causing
harmful interference to PUs can be computed as follows
[16], [17], [22]. Let us denote the path loss function between
a pair of given locations by ρ (, ); thus, a signal transmitted at
power ti from location li yields a received power of ti ·ρ

(
li, lj

)
at location lj. Let the total interference from other PUs plus
noise at Rj be Ij. To ensure that the signal-to-noise ratio at
each Rj is more than the desired value, say β, the maximum
power 5 that can be allocated to the SU is:

5 ≤ min
j

(sj/β) − Ij
ρ(l, lj)

, (1)

where sj = tiρ(li, lj) is the signal strength received at Rj
from its PU transmitting at power ti from location li. See
Fig. 1. Note that the above formulation is largely without
loss of generality— as the path-loss function ρ can be
arbitrary. Irrespective, the fundamental techniques developed
in our work are largely independent of the formulation or
algorithm used to determine the optimal allocation power—
since learning models and techniques are solely based on
training examples. In §IV, we use the above formulation to
generate the training examples for the models.
Two Settings: PU-Setting and SS-Setting: The

above formulation requires knowledge of PUs information
as well as the path-loss functions. However, in most
settings, neither of them may be available; in fact, this
is one of the key motivations of our learning approach.
In particular, PU parameters may not be available in military
or government setting, e.g., in the CBRS 3.5GHz shared
band [1] wherein the licensed users include Navy radar

systems. In light of the above, we consider two different
settings in this paper, based on the availability of PU
information/parameters.
PU-Setting. In this setting, the PUs’ parameters are

available—for determination of spectrum allocation. A PU’s
parameters include its location, transmit power, and its PURs’
locations.
SS-Setting. In this setting, PUs’ parameters may

not be available, e.g., in military or government settings.
In this case, to determine spectrum allocation, we make
use of a crowdsourced sensing architecture where relatively
low-cost spectrum sensors (SS) are deployed with a high
granularity [10], [12], [24], [43]. In such a crowdsourced
sensing architecture, allocation decision is based on SS
parameters, which includes each sensor’s location and
received (aggregated) signal strength from the PUs (pre-
sumably representative of the PUs parameters). Allocation
based on SSs parameters is implicitly based on real-time
channel conditions, which is important for accurate and
optimized spectrum allocation as the conditions affecting
signal attenuation (e.g., air, rain, vehicular traffic) may
change over time.

A. RELATED WORK
The spectrum allocation problem has been studied exten-
sively (see [19], [46], [56] for a survey), especially in the
context of shared spectrum systems. In a centralized SM
architecture, it is generally assumed that the SM has complete
knowledge of the PU parameters. Many prior works also
assume a propagation model which, in conjunction with
known PU parameters, allows spectrum allocation power to
be computed via linear programming [46] or other simple
techniques for common optimization objectives. However,
in practice, PU parameters may not be available, e.g., in the
CBRS (3550-3700 MHs, in the 3.5GHz) band [1] wherein
the licensed users include Navy radar systems. As most
propagation models have unsatisfactory accuracy, spectrum
allocationmust be done overly conservatively for correctness.
In particular, in TVwhite spaces spectrum (54-698MHz) [2],
spectrum allocation is done based on a database with TV
channel availability at each location; in essence, the SU is
allowed to transmit with a certain power if the signal received
at its location is below a low threshold. Such a listen-before-
talk [30], [45] allocation strategy, in general, can be very
conservative due to a combination of reasons: (i) the observed
signal is actually an aggregate over all PUs in the same band,
(ii) path-loss need not be symmetric, (iii) SUs may want to
transmit at a much lower power than the PUs, and (iv) PURs
may be a distance away from the PUs. In static systems,
a database approach [1] can also be used by pre-computing
the SA function and storing in the databases; however, such
an approach doesn’t work in any dynamic situation, e.g., SUs
at the tertiary level, PUs changing powers, path-loss changes
due to real-time conditions. In a closely related work, [22] has
developed an interpolation-based spectrum allocation scheme
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that works by first estimating the desired path-loss values
based on signal strength readings from deployed spectrum
sensors. In particular, they use inverse-distance weighted and
Ordinary Kriging interpolation schemes to estimate the path-
loss values. We compare our approach with theirs in §IV-§V.

1) MACHINE LEARNING (ML) BASED APPROACHES
To the best of our knowledge, there have been no prior
works that have used supervised learning to directly learn
the SA function, especially as defined here. The closest work
is [5], which uses supervised learning to analyze spectrum
occupancy based on the sensed signal at the SU. Deep
learning models have recently been used (see [41] for a
survey) to learn radio-propagation models and prediction;
e.g., using CNNs [54], for large-scale fading in 5G cellular
networks [39], using SegNet encoder-decoder model [38],
using SVMs [47]. Path-loss models can then be used to
allocate spectrum using Eqn. 1—however, Eqn. 1 requires
knowledge of PU parameters, which may not be available.
Moreover, the path-loss function fundamentally encodes
more information than the SA function,1 and thus, would
likely require much more training.

Reinforcement Learning (RL) Approaches. Reinforce-
ment learning (RL) models have been used in slightly
different spectrum allocation settingswhereinmultiple agents
are involved or competing with each other for spectrum
resource and they undertake a sequence of actions. E.g., [21],
[34], [37], [55], and [14] have applied RL techniques for
power control in multi-agent cellular networks, wherein the
agents interact with each other and cell towers to determine
power allocation. In addition, RL-based spectrum allocation
works in radio networks (see [35], [50] for surveys) have
largely focused on channel assignment; in contrast, our work
is focused on power allocation. Zhang et al. [53] propose a
deep RL algorithm where a deep neural network is used to
help SUs obtain information about PUs’ power policies.

2) MULTIPLE CHANNELS AND OTHER OBJECTIVES
In this paper, we implicitly assume a single channel for the
most part. Spectrum allocation for multiple channels can
be done by using single-channel techniques independently
for each channel and then selecting one of the available
channels based on some criteria (see §III-F). For example,
Wang et al. [48] picks a channel that maximizes the aggregate
data rate of SUs, and Li et al. [31] picks a channel that
allows for minimum transmission power for a desired SU
data rate. Other works have addressed spectrum allocation
with other optimization objectives. e.g., researchers have con-
sidered throughput maximization as an objective [40], [49]
under various constraints such as maximum allocated
power [31], given QoS requirements [29], etc. Fairness

1Note that the complete path-loss function is sufficient to estimate the
SA function, but not vice-versa. Estimating SA function from path-loss is
straightforward in the PU-Setting using Eqn. 1, while in SS-Setting
one can first estimate the PU parameters with reasonable accuracy from the
path-loss function and SSs readings.

and energy efficiency are some other criteria considered
[9], [20], [51].

B. OUR LEARNING APPROACH
1) MOTIVATION FOR LEARNING SA FUNCTION
Our goal is to allocate spectrum efficiently to SUs in general
settings, e.g., when PU parameters may not be available.
Tomotivate and justify our learning based approach, wemake
the following remarks. First, we note that to allocate spectrum
near-optimally to secondary users in general scenarios,
we fundamentally need to have knowledge of the signal path-
loss function. In practice, however, even the best known
path-loss models [13], [33] have unsatisfactory accuracy,
and conducting extensive surveys to gather path-loss values
is infeasible and moreover, may not even reflect real-time
channel conditions. In absence of knowledge of a path-
loss function, to allocate spectrum efficiently, we propose
to just learn the spectrum allocation function directly using
supervised learning techniques. Second, in our context,
an unsupervised approach is meaningless as unlabelled sam-
ples have minimal information (actually, zero information in
thePU-Setting), and as explained in §III, a reinforcement-
learning approach is also not suitable for our setting. Third,
learning the path-loss function first and then using Eqn. 1
to allocate spectrum is certainly a feasible approach – but,
since the path-loss function fundamentally encodes more
information than the SA function, it would likely require
much more training (note that the SA function depends
only on the most restrictive of the PURs). Finally, non-
trivial parameters such as weather, terrain and obstacles,
PU transmitters being directional, etc., can be relatively easily
incorporated in a learning approach (see §III-F), while they
would require more sophisticated modelling techniques and
algorithms to be incorporated in non-learning approaches.

Based on the above observations and insights, we propose
to learn the SA function directly from training examples.
In general, our goal is to learn the SA function accurately with
minimal training. Below, we discuss the inputs/features of
our learning models, and the gathering/generation of training
samples.

2) INPUTS/FEATURES OF THE SA FUNCTION A
For most of the discussion in this paper, we focus on
spectrum allocation to a single/first SU in a given area;
multiple or subsequent SUs can be handled similarly as
discussed later in §III-F. In the simplest of settings, the PUs’
information/parameters (location and transmit power) do not
change over time, in which case the SA function can be
simply represented as a function of just the SU’s location,
as the fixed PU parameters will be automatically captured
within the learned model. In this work, we focus on the more
general settings wherein the PUs’ information (location and
power) may change across training and evaluation samples.
For our two settings, viz., PU-Setting and SS-Setting,
inputs/features of our SA function are as follows.
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1) PU-Setting. In this setting, the PUs’ parameters are
available for spectrum allocation determination. Here,
the inputs to the SA function are PU parameters R
and location l of the requesting SU, and thus, the SA
function can be represented as a real-value function
A(R, l).

2) SS-Setting. In this setting, PUs’ parameters may
not be available, and, as mentioned before, we use
spectrum sensors (SSs) to gather received power and
use sensors’ readings to determine spectrum power
allocation. Here, the inputs to the SA function are
(i) SSs parameters S, and (ii) location l of the
requesting SU. Thus, the SA function is can be
represented asA(S, l). For each SS, its parameters may
include its location and aggregate received power from
the PUs, and in general, may also include the mean and
variance of the Gaussian distribution of the received
power.

3) GATHERING AND LABELING TRAINING SAMPLES
Note that gathering a training sample for A entails gathering
feature values and determining its ‘‘label’’—in our context,
for a given feature vector (SU location and PUs/SSs parame-
ters), the label is the maximum power that can be allocated
to the SU without causing harmful wireless interference
at any of the PURs. In the PU-Setting, the features
are the available PU parameters. In the SS-Setting, for
gathering training samples, we need to deploy SSs and gather
received powers (see §V) for collecting sample features.
In either setting, to label the sample, we need to estimate
the maximum allowable power at a given SU’s location;
this entails simulating PURs and determining the maximum
SU transmission power that allows PURs to receive the PU
signal (i.e., ensures that the signal-to-noise ratio is above
a desired constant). To estimate the maximum SU power
allowed, we can do a binary search on SU power, as done in
our tested setup described in §V. To circumvent the collection
of noisy samples, we can throw out samples that cannot be
reproduced. We acknowledge that the training process can
incur a substantial cost, but can be automated using drones
for entities. More importantly, training is done only one-time,
and thus, some amount of training cost is tolerable.

III. CNN-BASED DEEP LEARNING APPROACH
In this section, we motivate the convolutional neural net-
work’s (CNN) suitability for our context, and design an
efficient CNN architecture and associated techniques for our
problem.
Motivation for Using CNNs for SA Function: We observe

that SA function can be looked upon as an image regression
function, with the inputs to the SA function (SU location,
PUs/SSs parameters, etc.) represented as an image and
the regression value representing the optimal allocation
power. Framing SA function as an image regression function
allows us to leverage known advanced image regression

models. In particular, CNNs have been very successful
in image classification or regression tasks or in capturing
patterns/objects in images, because CNNs are able to exploit
the spatial structure in images via the use of learnable
spatially-localized filters (or kernels) in its convolution
layers. In our context, the spatial nature of the SA problem
(i.e., entities deployed over a geographic area) means that
the input to the SA problem can be represented as a 2D
image with sufficient accuracy. Such an input representation
allows us to use CNNs to learn the SA function effectively.
We corroborate our above intuition about the suitability of
CNNs to our problem via extensive evaluations in §IV. For
the general case ofmultiple SUs, we augment our CNNmodel
with Recurrent-Neural Networks (RNNs) in §III-F.

Radio propagation modeling and prediction using CNNs
cnn-4 overview cnn-3 large-scale fading in 5G cnn-2

Challenges. However, there are significant challenges that
need to be addressed, to make CNN a viable and efficient
approach to learn the SA function. These include the pre-
processing of samples into ‘‘images’’ to feed as input to a
CNNmodel, creating an efficient CNN architecture, ensuring
minimal false positives, handling multi-path fading effects,
minimizing training costs, etc. We discuss these challenges
in the following subsections.
Other Machine Learning Models: We believe that CNNs

are best suited to model the (single SU) SA function.
However, other machine learning models can also be used
to learn the SA function—in particular, we also evaluate
neural networks (NNs) and space-vector machines (SVMs)
approaches in §IV-A.

However, we note that reinforcement learning (RL)
approach is not suitable for learning the spectrum power
allocation function, as defined in this work, for the following
reasons. Learning our SA function is fundamentally a
supervised learning problem—since our learning goal is
to approximate a function using labeled training examples
(which can be gathered, as discussed before). In contrast,
in RL settings, an agent learns a policy about which action to
take on each state so as to maximize the cumulative reward;
the learning of such a policy is driven by (i) the rewards
given by the environment based on the current/next state(s)
and/or the action taken, and (ii) the Markov-decision process
(MDP) over the system states and actions that represent how
the system transitions through states potentially influenced
by actions. As there is no underlying MDP governing our
spectrum allocation setting, the RL approach is not suitable
for our context.2

A. SH-ALLOC: SHALLOW CNN MODEL
In this subsection, we discuss our basic CNN architecture
and approach, which we refer to as SH-Alloc, as it has

2If we use the RL technique in our setting by considering actions as power
allocations, we’ll need to provide training examples for every possible system
state, due to the lack of an underlying MDP, making the approach infeasible.
Note that in a setting with no underlying MDP, the RL approach learns the
policy independently for each state.
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FIGURE 2. Image representation of a sample for input to the DeepAlloc
model. Here, there are four PUs (2 in the first sheet, and 1 in the other
two sheets) and one SU (in the fourth sheet). Each sheet for the PUs
corresponds to a range of PU’s transmit power; e.g., PUs whose transmit
power is in the range −10 to 0 dBm are placed in the first sheet. When
representing SSs in SS-Setting, we place SSs in the sheets based on
their locations.

a small number of layers. In the next subsection, we will
extend this approach to the DeepAlloc approach that uses
a much deeper CNN architecture with a larger number of
layers. We start with discussing our strategy to pre-process
training samples into images.

1) PRE-PROCESSING TRAINING SAMPLES TO IMAGES
The first challenge in applying CNNs to our context
effectively is to transform each training sample to an ‘‘image’’
for input to the CNNmodel, in a way that it is most conducive
to efficient learning. Representing the entities (PUs, SSs,
SUs) as objects in a 2D image is a natural choice. In particular,
we could represent each entity type with a different color or
shape, or more specifically, represent each entity by a disk of
a certain color with a radius based on the transmit/received
power. Our choice of image representation is tantamount to
feature engineering [6], and can have a significant impact on
the training cost. Below, we discuss the choice made in our
model design. First, we assume that the PURs are distributed
similarly across all PUs; more formally, we assume that
the distribution of PURs around its PU P is a function
of P’s parameters (location and power). Under the above
assumption, we do not need to represent PURs of any PU in
the input image—as the distribution of PURs can be learned
by the model from each PU’s parameters. E.g., if for each
PUP, its PURs are distributed uniformly within a fixed radius
around P (or within a radius proportional to P’s power), then
we don’t need to represent PURs in the input image.
PU-Setting: Representing PUs in Multiple Image

‘‘Sheets.’’ Note that just using shapes or colors for different
entities is insufficient, as we also need to represent the
transmit/received powers. Just using radius to represent
powers is not viable either, as we may start getting
intersections between shapes. Thus, we compose the input
image of a certain number of ‘‘sheets’’ (see Figure 2). Then,
we divide the expected transmit-power range into ranges of
about 5-10dBm and assign each PU to the appropriate image
sheet depending on its transmit power. Within each sheet, we
then use disks to represent each PU, with the brightness of
the center pixel as well as the radius of the disk proportional

to the transmit power. In addition, to give more importance to
the center (which represents the true location) and to suggest
signal attenuation away from the center, we decrease the
brightness of the pixels away from the center in a logarithmic
manner. If there is an intersection between two objects in
the same sheet, we aggregate the intensity of the common
pixels. Unlike normal images, which are composed of three
sheets corresponding to red, green, and blue colors, we may
use more than three sheets.
SS-Setting: Representing Spectrum Sensors’ (SSs)

Readings. SSs can be represented similarly to PUs with
the size of their disk proportional to the received (rather
than transmit) power. However, unlike PUs, we place SSs
among the sheets based on their location rather than received
powers, e.g., SSs from certain grids were always placed on
the first sheet irrespective of their received-power readings.
In our evaluations, we observed that placing SSs over sheets
based on locations improved the performance of our models
significantly compared to placing the SSs based on received
powers.

Representing SUs. We use a separate sheet to repre-
sent SU(s), instead of representing them with a different
shape/color, to facilitate potentially more efficient training.
SH-Alloc CNN Model Architecture. To design a CNN
architecture to learn the SA function efficiently, we need to
carefully determine the various model parameters. For our
SH-Alloc model, we choose these parameters as follows.
(i) Number of convolution layers in a CNN model plays an
important role in training cost as well as model accuracy.
In general, a deeper model (i.e., with more number of
convolution layers) performs better than a shallow one but
incursmore training costs. In our context, only a few thousand
training samples are feasible to gather, we use 5 convolution
layers, and 3 fully-connected layers as in a neural-network
architecture. (ii) Filter Size: To be able to ‘‘detect’’ small-
radius PUs of small power values, we use a 3 × 3 filter
in the convolution layers. The number of filters is small
for the initial layers, and then increases with the ‘‘depth’’ ;
this facilitates the detection of more and more complicated
features in the deeper layers. (iii) Activation Function: In
our context, as the final output of the model is a real
number, we chose a linear activation function for the last
network layer with only one neuron. For other layers, we use
Rectified Linear Units (ReLU) [36] activation function as
its non-linearity enables the model to learn a more complex
function faster.

The overall CNN-based spectrum allocation system is
shown in Fig. 3, including components discussed in the
following subsections.

B. DEEPALLOC: PRE-TRAINED DEEP CNN MODEL
It is well understood that deeper neural networks, i.e., neural
networks with more layers, and in particular, deeper CNN
models can yield much better performance with their ability
to learnmore complex functions, with sufficient training data.
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FIGURE 3. CNN-based Spectrum Allocation System. For the CNN Model component, SH-Alloc uses a shallow CNN model without any pre-training, while
DeepAlloc uses a deep pre-trained CNN model obtained from Fig. 4. In both cases, after any pre-training, the (field) training samples are gathered,
converted into images, and then used to (further) train the CNN model. The learned model is then used to allocate spectrum to requesting SUs.

FIGURE 4. DeepAlloc Pre-Training Process. Here, we generate a large number (≈ 1M) of images assuming a log-normal propagation model based on an
estimate path-loss exponent, and pre-train a deep CNN model (we used ResNet) using these generated images. The pre-trained model is then used in
Fig. 3 for further training using a smaller number of field training samples.

However, there are two major challenges with using deep
models. First, as the number of layers increase, so does the
number of parameters to learn—which in turn requires a
much larger number of training samples. Second, a deeper
model is more likely to learn a function that overfits the
training data, if the training data is not sufficient. The perfect
solution is to use a deep network but also have a sufficiently
large training set. However, in our context, it is infeasible to
gather more than a few thousand samples as the deployment
and/or labeling costs are high, while a very deep (e.g.,
with 20-100 layers) network may require close to a million
samples to train properly [15], [23], [44].

1) USING PRE-TRAINED MODELS
Our approach to address the above challenge is to use a
pre-trained deep model, i.e., a deep model that has already
been trained with readily-available images, which may not
represent spectrum allocation samples. Such a strategy has
been often used in computer vision applications with great
success. Similarly, we could also use pre-trained deep well-
knownmodels such as VGG [44], ResNet [23], Xception [15]
which have been trained with around 1 million daily-life
images, and then train them further with a few thousand
spectrum allocation training samples, as in the previous
subsection.

DeepAlloc Approach. One unique aspect of our context
is that the pre-training samples or images can be easily
synthesized based on an assumed propagation model. Thus,
to obtain better performance than the above models are
pre-trained with daily-life images, we can pre-train a deep
architecture (we use ResNet [23]3) with generated spectrum
allocation images based on an assumed log-normal prop-
agation model with an ‘‘appropriate’’ path-loss exponent.
(Results in Fig. 10(b) of §IV-A validate the above pre-
training approach.) The path-loss exponent α can be derived
by gathering a few (say 100-200) path-loss samples, and
determining the best α that minimizes the error between the
actual samples and those from the log-normal model. See
Fig. 4. Then, as before, we train such a pre-trained model
further with a few thousands of SA training samples as shown
in Fig. 3. We refer to this overall approach as DeepAlloc.

C. MINIMIZING FALSE POSITIVE ERROR
Note that we should rarely allocate power higher than that
determined by Eqn. 1, as it would cause harmful interference
to some PURs. Ideally, we would like to minimize such
cases, which we call false positives, drastically—perhaps,

3We evaluated VGG-based DeepAlloc too but it was easily outper-
formed by the ResNet-based DeepAlloc architecture especially in the
SS-Setting.
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at the cost of higher number of (and/or errors in) the false
negative cases. We address this issue by a combination of
two strategies. First, we choose the hyper-parameters of the
CNN model in a way that minimizes the number of false
positives; the methodology here is largely trial and error,
due to a lack of techniques to systematically search for
hyper-parameter values. Second, we use asymmetry in the
training loss function as follows. Essentially, we change the
training loss function J (θ ) such that false positive samples
(SU requests that get higher power than the maximum) are
penalized more drastically than the other requests. More
formally, we define the training loss function as:

J (θ ) =
1
m

αFP
∑
ŷi>yi

l(ŷi, yi, θ ) + αFN
∑
ŷi≤yi

l(ŷi, yi, θ )


(2)

Above, αFP and αFN are coefficient weights for the false
positives and false negatives respectively, yi is the ‘‘ground
truth’’, ŷi is the predicted value, θ is the internal set of the
parameters being learned, and l(.) defines the error for a single
sample. To minimize false positives, we can choose a much
higher αFP than αFN .

D. HANDLING MULTI-PATH EFFECT
Wireless signal attenuation is a result of three mutually
independent, multiplicative propagation phenomena [42],
viz., large-scale signal attenuation, medium-scale shadowing,
and small-scale multipath fading. The shadowing effect can
cause overall path loss to vary over 10s to 100s of meters, and
the fading effect can cause an effect over a few wavelengths.
See Fig. 5 (a). The overall effect of these phenomena in
our context is that learning the SA function could require a
much higher number of training samples—to sufficiently and
accurately capture the small to medium scale fluctuations.
This challenge is fortunately mitigated by the fact that the
small-scale fluctuations in the path-loss function are unlikely
to fully manifest in the SA function, as the SA function
depends only on the most restrictive of the SU-PUR path
losses.

In our context, one way to address the above challenge
is to learn instead of a more ‘‘conservative’’ SA function
that may be easier to learn but may allocate sub-optimal
power. E.g., the conservative SA may be based on a
lower-bound approximation of the path-loss function. See
the red curve in Fig. 5 (a). We note that the technique
in the previous section is also driven towards learning a
more conservative function via an appropriate training loss
function. However, the model inaccuracy resulting from the
multi-path effect is fundamentally due to a lack of sufficient
training samples needed to learn a function with high spatial
resolution/variability; thus, we can’t fix the model inaccuracy
due to the multi-path effect by merely changing the loss
function, model, or its training process. Our strategy to learn
a more conservative function that addresses the multi-path

FIGURE 5. (a) Spectrum allocation function, when there is a single PU
and a single SU, due to path loss with shadowing and multi-path fading
effects. Note that the path-loss function has a similar trend. The red plot
is a conservative spectrum allocation, based on a similar conservative
path-loss function. (b) Modifying labels of training samples to drive the
model towards learning a simpler and more conservative spectrum
allocation function.

effect challenge is to actually modify the labels of the training
samples appropriately, as discussed below.

1) LEARNING A CONSERVATIVE SA FUNCTION BY
MODIFYING TRAINING SAMPLE LABELS
To ensure few false positives in the face of the small-
scale multi-path the fading effect, we modify the training
samples by lowering their labels from the optimal allocated
power to smaller values so that the modified training samples
represent a ‘‘conservative’’ spectrum allocation function
without the small-scale effects. In particular, let’s consider
a training sample–corresponding to a certain set of PUs
with given transmit powers, PURs, and SU Si with allocated
power 5 which satisfies Eqn. 1.4 (Our discussion in this
subsection applies to both settings, viz., PU-Setting and
SS-Setting.) Let li be the location of the SU Si. Now, let
PURRj be the PUR that results in Si’s allocated power, i.e., let
j = argminj

τj−Ij
ρ(li,lj)

from Eqn. 1. In the following discussion,
we vary li while keeping everything else constant–thus,
we can look at j, Rj, and allocated power 5 as functions of li.
Now, in a sufficiently small neighborhood N of Si, the PUR
Rj(li) as computed above and thus 5(li) must remain fixed
for li ∈ N . Moreover, 5(li) is also inversely proportional to
ρ(li, lj) with lj fixed, and more importantly, variation of 5(li)
within N is largely dominated by the small-scale effect of the

4However, note that 5 is not computed using Eqn. 1, as many terms in it
are unavailable.
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path-loss function. Let y = maxli∈N 5(li) − minli∈N 5(li),
which in some sense is an estimate of the ‘‘amplitude’’
of the small-scale effect. We now use the value of y to
lower the allocated power label of the training samples. See
Fig. 5(b). The modified samples essentially correspond to a
conservative spectrum allocation function, without the small-
scale effect. Note that the value y depends on the small-scale
effect of the terrain. If we assume the effect to be uniform
across the given region, then the same value of y can be used
across all the training samples—else, we compute y in each
subarea.

E. SYNTHETIC SAMPLES TO IMPROVE PERFORMANCE
One way to improve performance, i.e., to aid the model
in extracting the most information from the given training
samples, is to create additional synthetic samples from
the training samples. In effect, the new synthetic samples
incorporate the domain knowledge used in creating them.
In general, from a given sample {X , y} where X is the set of
features (PU parameters or SS readings, and the requesting
SU’s location) and y is the label (allocated power), we create
synthetic samples of the type {X ′, y}whereX ′ is another set of
features that yields (approximately) the same label y. Below,
we discuss the generation of synthetic samples for our two
settings, and evaluate the improvement from these strategies
in §IV-A.

1) PU-SETTING
Consider a sample {X , y} where X includes the PU param-
eters. For this sample, let P be the PU for the PUR Rj
that determines the SU’s optimal power allocation, as in the
previous subsection. LetP be a set of PUs that are sufficiently
far away from P. Note that P is determined when labeling
the given sample, and P can be determined from P and the
available PU parameters. Now, note that decreasing the power
of PUs in P should not change the optimal power allocated
to SU. Thus, we can create additional synthetic samples by
considering X ′ which differs from X in that the transmit
powers of PUs in P is lower than that in X .

2) SS-SETTING
In the setting, wherein the features are composed of sensor
readings, we generate synthetic samples by determining
sensor readings at additional locations via interpolation
techniques. In particular, based on the log-distance-like
behavior of signal attenuation, we use a slight modification
of the traditional IDW technique. More formally, for a known
set of sensor readings (pi, li) where pi is the received power
at location li, the interpolated value q at a new location l is
given by: q =

∑
i wipi∑
i wi

, where wi is the weight defined as wi =

1
log10(d(li,l))

. Based on the above interpolation scheme, for a
given sample (X , y) where X is the set of real sensor readings,
we can create synthetic samples of the type (X ′, y) where
X ′ consists of some readings from X and some interpolated
readings.

3) ROTATED IMAGES
In addition to the above, we also synthesize additional
samples by just ‘‘rotating’’ the images of the original samples;
such a strategy is bound to be useful in regions where the
propagation model is largely dependent on the distance.
In our evaluations, we rotate the given images by 90 or
180 degrees.

F. MULTIPLE SUS
Till now, we have only considered spectrum allocation to
the initial single SU. Handling subsequent SUs in the same
manner as the initial SU above requires allocated power to the
active SUs. We start with discussing how to handle multiple
SUs one at a time, and then discuss handling multiple SUs
simultaneously.

1) HANDLING SUS ONE AT A TIME
To handle subsequent SUs, we can augment the list of
features to include the active SUs’ parameters and train the
model accordingly. This approach is viable, especially in the
context of our DeepAlloc model, since active SUs with
their parameters (location and allocated power) can easily be
represented in the single input sheet dedicated to SUs. The
only change we need to make is that we must now represent
SU’s allocated power too; we can represent them with a disk
similar to PUs, i.e., with the center’s brightness and radius
proportional to the allocated power. If multiple SU requests
arrive together, then to use the above approach, we need
to decide on an order in which to handle the requests. One
approach is to handle them in a greedy order as follows;
we call this approach DeepAlloc-Greedy. We divide the
whole area into non-overlapping subareas and assign each
subarea X a weighted score equal to the total aggregated
power transmitting from all the PUs and active SUs in X
or its adjoining cells. Then, we pick the SU requests in the
ascending order of the weight of the subarea they belong to.

2) HANDLING MULTIPLE SUS SIMULTANEOUSLY
Handling SUs one at a time, though easier and simpler, can
lead to unfair and/or far-from-optimal (in terms of say, total
power allocated) allocation. Thus, we now discuss how to
extend our deep-learning models to facilitate simultaneous
allocation of powers to multiple SUs. Recall that our
DeepAllocmodel is trained to predict the maximum power
that can be allocated to a single SU. To allocate powers
to multiple SUs {S1, S2, . . . , Sn} simultaneously, we need to
essentially learn a function that maps the list of SUs’ locations
⟨l1, l2, . . . , ln⟩ to the list of simultaneous allocated powers
⟨Q1,Q2, . . . ,Qn⟩. To learn the above function, we use two
different learning approaches.

(1) DeepAlloc-NN. The simplest approach is to use a
traditional neural-network (NN), with inputs as the list of
SUs’ locations ⟨l1, l2, . . . , ln⟩ and other available PU or SS
parameters, and the output as the list of allocated simulta-
neous powers ⟨Q1,Q2, . . . ,Qn⟩. To leverage our developed
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single-SU model DeepAlloc and facilitate more efficient
training, instead of passing the PU or SS parameters, we pass
the set of ‘‘independently allocated’’ powers {P1,P2, . . . ,Pn}
where Pi is the power allocated to Si assuming no other SU
Sj(j ̸= i) is active. Thus, the input to the NN is the list
⟨(P1, l1), (P2, l2), . . . , (Pn, ln)⟩, with the output being the list
of simultaneous power allocations ⟨Q1,Q2, . . . ,Qn⟩. TheNN
is trained using training samples with labels determined as
described below. In our simulations, we used a 4-layer NN
with 128 neurons in each layer and a dropout of 80% before
the last layer.

(2) DeepAlloc-RNN. As mentioned above, we need to
learn a model that maps a list/sequence of SUs’ locations
to a list/sequence of allocated powers. In recent years,
the Seq2Seq models have achieved a lot of success in
learning tasks that involve mapping a sequence of words to
another sequence of words, e.g, in machine translation, text
summarization, image captioning, etc. In particular, Google
Translate uses Seq2Seq model to translate a paragraph from
one language to another. The Seq2Seq model comprises of
an encoder to encode the input sequence, and a decoder to
map the encoded data to a target sequence. The encoder
essentially creates a sequence of hidden state vectors each
of which depends upon the previous input and state vector.
Similarly, the decoder uses the created hidden state vectors
with appropriate attention/weighting schemes to generate a
target sequence.

As our multi-SU spectrum allocation problem entails
mapping a sequence of SUs’ information to SUs’ power
allocations, we develop a Seq2Seq model with appropriate
inputs, outputs, and internal components as follows. For
our purposes, we propose to use an RNN-based Seq2Seq
model, which we call DeepAlloc-RNN. In particular,
we implement the encoder using a bi-directional long
short-term memory (LSTM) model and the decoder as a uni-
directional LSTM. See Fig. 6.We use bi-directional LSTM as
the encoder to facilitate interpretation of the input set of SUs
as unordered to signify simultaneous allocation. In addition,
rather than passing ⟨(P1, l1), (P2, l2), . . . , (Pn, ln)⟩ as the
input to the RNNmodel as we did in the above NN approach,
we pass the set of feature-sets {Fi} as input where Fi is as
follows (see below for the motivation). The feature-set Fi (for
a given Si) is the output of the average-polling layer (Fig. 4)
of the DeepAlloc model, when the input (represented in
sheets) is SU Si’s location li and independent power Pi and
given PUs/SSs parameters. See Fig. 6. The above idea of
passingFi’s to the RNN allows us to encodemore information
in the input to the RNN, rather than just the power Pi’s. The
final output of the decoder represents the powers allocated to
the SUs together.

Determining Training Sample Labels (Binary-Alloc).
To train the above models, we need a method to label the
training samples; in particular, we need to design an algorithm
to determine the optimal powers to allocate to multiple
concurrent SUs. Our implicit performance metric is the total
power allocated to the given set of SUs. Here, in the training

FIGURE 6. RNN-based Architecture for Simultaneous Allocation to
Concurrent SUs. The input to the encoder is the convolution output Fi of
DeepAlloc for each SU Si , and the output of the model is the SU power
allocations {Qi }. The input to DeepAlloc for each Si is a set of sheets
representing Si ’s location li and independent power Pi and PUs/SSs
information.

phase, even though we can assume knowing whether a certain
power allocation to multiple SUs causes interference to any
PUR, to determine optimal power allocation to multiple
SUs is still non-trivial. Since we couldn’t design an optimal
algorithm, we used the following Binary-Alloc heuristic
which performed well in practice. The Binary-Alloc
heuristic is a binary-search-like iterative algorithm as follows.
At any iteration, each SU i is assigned a range [li, ui] of
powers such that if all SUs are allocated the lower-end li of
their ranges then there is no interference caused to any of the
PURs. The algorithm iteratively reduces (in half) the range of
one of the SUs, till the range of each SU is smaller than the
threshold. In particular, in each iteration, the algorithm picks
the SU i with the largest range (ui − li), and either moves the
lower-bound li or upper-bound ui to (ui + li)/2 depending on
whether (ui + li)/2 causes interference to a PUR.

3) MULTIPLE CHANNELS; REQUEST DURATION
Till now, we have implicitly assumed a single channel.
To handle multiple channels, we can extend our schemes
easily. If the signal propagation characteristics are different
for different channels, then we can create a separate model
for each channel. Then, for a single-SU request, we can
pick the channel that allows for maximum power allocation.
We can also modify the above multi-SU approaches, for the
multi-SU scenario, as follows. The DeepAlloc-Greedy
approach extends naturally. For DeepAlloc-NN and
DeepAlloc-RNN, we use a simple scheme of uniformly
(and randomly) partitioning the given set of SUs into multiple
sets and assign a channel to each set; incorporating channel
assignment in the model would require much more training,
and thus not considered for simplicity. Finally, to handle
requests for a specified duration, whenever a currently active
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SU becomes inactive (i.e., at the end of its authorized
duration), we reallocate other active SUs’ allocations.

4) OTHER GENERALIZATION: NON-ISOTROPIC USERS,
WEATHER, OBSTACLES
We now briefly discuss how our approach can be gener-
alized to handle more general and sophisticated scenarios.
We start with discussing how to handle non-isotropic PUs
or SUs. In the PU-Setting, the non-isotropic PUs can
be represented by an appropriate cone (instead of a disk).
In the SS-Setting, the SS readings would naturally
incorporate the impact of non-isotropic PUs—and hence,
there are no changes to the approach. To handle changes in
propagation models due to different weather conditions, we
can train different models for different weather conditions
(e.g., rainy, summer, winter, etc). To incorporate more
fine-grained weather conditions, we can use a separate sheet
to represent weather information over the given area. Note
that obstacles and terrain information, being largely fixed,
is already implicitly incorporated in the learned model.

IV. LARGE-SCALE SIMULATIONS
In this section, we discuss our large-scale simulation
results conducted over a large geographical area (we
discuss an outdoor testbed evaluation in the next section).
We start with describing the underlying propagation model
used in our simulations. All our developed software is
open-source [3].

1) LONGLEY-RICE PROPAGATION MODEL AND SETTING
To evaluate our techniques over a realistic propagation
model, we use the well-known Longley-Rice [13] Irregular
Terrain With Obstruction Model (ITWOM), which is a
complex model of wireless propagation based on many
parameters including locations, terrain data, obstructions, soil
conditions, etc. We use SPLAT! [32] to generate path-loss
values; SPLAT! is an open-source software implementing the
Longley-Rice propagationmodel.When simulating the above
propagation model, we consider an area of 1km× 1km in our
state and use the 600 MHz band to generate path losses using
SPLAT!. As the height of an entity is an important factor in
determining the path loss, we place the transmitters (PU or
SU) at a height of 30m and the receivers (PURs and SSs)
at 15m above the ground level.5 For clarity of presentation
and due to limited space, in many plots, we only show results
for the PU-Setting; in these cases, the observed trend in
SS-Setting is similar.

2) PERFORMANCE METRICS (AERR, AFP) AND ALGORITHMS
The main performance metric used to evaluate our technique
is the average (absolute) difference in power allocated to
the requesting SU with respect to an optimal algorithm;

5At much lower heights, transient obstacles such as vehicles and
temporary structures, would affect the path-loss model—which the SPLAT!
software doesn’t account for; thus, we choose a higher altitude to simulate
an accurate setting.

here, the optimal algorithm has the knowledge of the exact
path-loss values and is thus able to use the Eqn. 1 to
compute the power to be allocated to the SU. We denote
this measure by Aerr. To evaluate the impact of false
positives, we also consider the average false-positive error
metric Afp which is computed as the aggregate error in
the false-positive samples over the false positives divided
by the total number of samples. The Afp metric informally
measures the level of interference caused by the spectrum
allocations. We implement standard ML techniques, viz.,
a 3-layered neural network (NN), support vector regression
(SVR) [18], our CNN-based approaches SH-Alloc (§III-A)
and DeepAlloc (§III-B). Recall that DeepAlloc is based
on a pre-trained deep CNN architecture based on ResNet [23]
architecture. As detailed in §II, the closest work relevant
to our setting is the one in [22] which has available the
PUs’ parameter values as well as the SS readings, and uses
interpolation techniques to estimate path-loss values between
relevant entities; we denote this approach by IP-Based.6

We note that the simple Listen-Before-Talk approach
resulted in a Aerr of a several 10s of dB in our simulations,
and has not been shown in the plots for clarity. The largeAerr
value for the very conservative Listen-Before-Talk
approach (see §II-A) is due to the fact that in a large majority
of evaluation samples SU is not allocated any spectrum power
as some of the PUs’ power is always received in a large
fraction of the area.

3) TRAINING SAMPLES
As described in §III, there are two types of training samples
used in training our models: (i) pre-training samples used
to pre-train the DeepAlloc; these samples are based on
the log-normal propagation model with a path exponent
computed from a small number of path-loss samples; we
computed an exponent of 3.3 from 200 path-loss samples.
(ii) training samples, which are gathered in the field as
described below; these samples are used to train all the
ML models, including the DeepAlloc after pre-training.
In addition, for our schemes, we also use synthetic samples
(§III-E), which are derived from the training samples.
To create a training/evaluation sample, we place 10 to 20 PUs
at random locations in the given area and assign them a
random power within the range of 0 to −30dBm. Each PU
has a random number (5 to 10) of PURs distributed randomly
within a distance of 50m from the PU. We vary the number
of sensors from 49 to 625 (with 400 as the default) sensors
uniformly distributed in the field. For NN and SVR models,
we assume the maximum number of PUs to be 20, and use
dummy parameter values if the number is less than 20.

Validation and Evaluation Samples. In most of our plots,
we vary the total number of training samples from 256 to
about 4096 (with a default value of 2048), of which 20%

6In our implementation of IP-Based algorithm, we fine-tuned its
internal path-loss exponent parameter α to get the best performance; we
ended up using a value of 3.3.
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FIGURE 7. Performance comparison of various schemes for
pre-processing the training samples into images.

are used for validation purposes (to tune the model’s
hyper-parameters) and the remaining are used to train the
model. In addition, we create and use 40,000 separate samples
for evaluation purposes.

4) TRAINING CNN MODELS
To pre-train the DeepAlloc using the generated pre-
training samples (we used 1m samples), we used SGD
optimizer with a mini-batch size of 64. The learning rate
starts from 0.01 and is divided by every 10 epochs. We use
a weight decay of 0.00001 and a momentum of 0.9. Then,
for fine-tuning the DeepAlloc model using real (field)
samples, we use Adam [28] optimizer with a very low initial
learning rate of 0.00001 while keeping the other parameter
values the same. Among all the hyper-parameters, we only
optimize the regularization value.

A. PERFORMANCE RESULTS (SINGLE SU)
We now present our performance results for various algo-
rithms and settings. We evaluate various techniques for the
case of a single SU request; we consider multiple SUs in the
next subsection. Each data point in the plots is an average of
over 40,000 evaluation samples.

1) VARIOUS PRE-PROCESSING SCHEMES
We start with evaluating various pre-processing schemes
for creating images from the training samples, as input to
our basic CNN approach SH-Alloc. Here, we refer to
the multi-sheets based approaches (i.e., from Fig. 2) as
SH-Alloc-N , where N is the number of sheets used for
the PUs/SSs. We also evaluate the Colored and Shapes
schemes, where the Colored scheme uses different colored-
disks (red, green, and blue) for the three entities (PU, SS,
and SU) and the Shapes scheme uses a grey-scale image
with different shapes for the entities (PU: circle, SU: square,
SS: rectangle). We maintain the shape sizes to be small (to
avoid intersections) and uniform for each entity, but vary the
intensity to represent the transmitted (received) power. See
Fig. 7 for a performance comparison of the above schemes
in both settings. We observe that the SH-Alloc-N schemes
outperform the other two schemes, with the increase in
N improving the performance as expected. Thus, we use
6 image sheets for PUs/SSs.

2) VARYING TRAINING COST AND NUMBER OF PUS/SSS
We now evaluate the fundamental performance of various
algorithms in terms of the keyAerr metric in our two settings,
PU-Setting and SS-Setting, for varying number
of (field-gathered) training samples and the number of
PUs/SSs. See Fig. 8. First, our main DeepAlloc approach
outperforms all the other approaches for both settings. More
importantly, DeepAlloc delivers great performance for
the PU-Setting with less than 3dB performance gap
with the optimal solution. As expected, the performance
of our approaches is better in PU-Setting than that in
SS-Setting, since fundamentally the PU-Setting has
more direct information relevant to the spectrum allocation
function. Second and more specifically, we observe that
both the CNN-based approaches outperform the IP-Based
algorithm by a large margin in the PU-Setting; in the
SS-Setting, the DeepAlloc approach easily outper-
forms the IP-Based algorithm, except for large number
of sensors wherein both techniques perform similarly.
Recall that the IP-Based approach has the advantage of
knowing both the PU parameters as well as SS readings,
while the ML algorithms have knowledge of only one of
these inputs—thus, it is surprising and commendable that
DeepAlloc is able to outperform the IP-Based approach.
The above observations suggest that DeepAlloc is able
to learn the spectrum allocation function effectively. Lastly,
we observe that the performance gap between the CNN-based
approaches (SH-Alloc and DeepAlloc) is significant—
which demonstrates the value of pre-training a deep CNN
model.

3) EVALUATING TECHNIQUES FOR MINIMIZING
FALSE-POSITIVE ERRORS, HANDING MULTI-PATH
EFFECT, AND SYNTHETIC SAMPLES
We now evaluate our specialized techniques developed in
§III-C-III-E for various aspects. See Fig. 9. Fig. 9(a) evaluates
the §III-D’s technique to minimize false positives. We plot
Aerr and Afp metrics for varying αFP/αFN ratio; we see that
increase in αFP/αFN ratio is effective in minimizing the false-
positive error Afp, at the cost of higher average Aerr. Next,
in Fig. 9(b), we evaluate the technique from §III-D to handle
multi-path fading effects by learning a conservative function
via modified labels. Here, we plot the Aerr and Afp for
the basic as well as the conservative technique. We observe
that the conservative technique’s false-positive error (Afp)
is indeed reduced without much increase in the total error
(Aerr), compared to the basic approach. Fig. 9(a)-(b) are in
PU-Setting; the SS-Setting results were similar (not
shown). Finally, in Fig. 9(c)-(d), we evaluate the benefit of
using synthetic samples as described in §III-E. Here, we show
PU-Setting as well as SS-Setting as the algorithms
for generating synthetic samples are very different. In
PU-Setting (Fig. 9(c)), the performance gain due to
synthetic samples in positive but minimal—perhaps, because
the performance was already near-optimal. In SS-Setting
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FIGURE 8. Performance comparison of various algorithms for increasing number of training samples and PUs/SSs.

FIGURE 9. (a) Minimizing false-positive error (Afp), (b) Handing multi-path effect via learning a more conservative function, and (c)-(d) Using
synthetic samples to improve performance. Here, (a)-(b) are in PU-Setting; the SS-Setting had similar results.

FIGURE 10. Performance comparison of (a) DeepAlloc over different
regions, and (b) various pre-trained models for increasing number of
training samples.

(Fig. 9(d)), we see a significant performance improvement
due to synthetic samples—validating our use of interpolation-
based synthetic samples. Here, we added 2500 new uniformly
distributed sensors and interpolated their readings using the
four nearest original sensors.

4) MULTIPLE REGIONS
We also evaluated our DeepAlloc scheme over other
regions with different sizes and terrain characteristics.
See Fig. 10(a), which plots performance of DeepAlloc

over three different regions—500m × 500m (our university
campus), 1km× 1km (airport landing area, the default region
in all other plots), and 5km × 5km (an urban area). We plot
results for PU-Setting wherein the number of PUs is
between 10 and 20. We see that DeepAlloc has an Aerr
of 3-4.5 dB across all regions, and it performs the best over
the airport landing area likely due to the lack of buildings and
thus more uniform path-loss characteristics.

5) VARIOUS PRE-TRAINED MODELS
Finally, we present evaluation results for various pre-trained
deep models. In particular, in addition to our DeepAlloc
architecture, we also used some well-known Image Clas-
sification models such as VGG [44], ResNet [23], and
Xception [15] which are all pre-trained with over 1 million
images involving our daily-life objects; these pre-trained
models were further trained with a varying number of (field-
gathered) training samples.7 See Fig. 10(b), which plots
the Aerr metric in PU-Setting for the above models
compared with our DeepAlloc. We see that our approach
of pre-training using log-normal model-based images in
DeepAlloc yields a notable performance improvement;

7For these models, we use Colored scheme of creating images from
training images, as they use colored images (rather than sheets) during pre-
training.

8444 VOLUME 12, 2024



M. Ghaderibaneh et al.: DeepAlloc: Deep Learning Approach to Spectrum Allocation in Shared Spectrum Systems

FIGURE 11. Multiple SUs. (a) Power allocated to subsequent SUs, in presence of other active SUs. (b)-(d) Average different wrt ground truth (GT),
Fairness (max/min ratio), and Total data rate for multiple SUs by various multi-SU algorithms.

the performance gap is particularly significant for a lower
number of training samples.

6) COMPUTATION TIMES AND COMPLEXITY
The inference time complexity of all our ML approaches
is linear in the size of the input, and thus, the inference
time in practice is minimal (a fraction of a second). The
training time complexity of most ML models depends on
the training samples and the resulting convergence, and
is thus, uncertain. The actual training times incurred from
our set of training samples, on a 4GHz 8-core machine
with a GeForce RTX 3080 GPU, were as follows: a few
minutes for NN as well as SVR approaches, and a few hours
for SH-Alloc. To train the DeepAlloc model, it took
5-7 days of computation time to pre-train the model using
1M images and a few hours to train/fine-tune the model after
pre-training using SA training samples.

B. MULTIPLE SUS/CHANNELS
1) SUBSEQUENT SU
We start with comparing the spectrum power allocated to
a single new SU with previous SUs being active. Each
sample has a random number (between 1 and 10) of active
SUs. For evaluation purposes, we assume that the active
SUs are assigned the optimal power (as per Eqn. 1, with
full knowledge of PU information and path-loss values) and
they transmit using this optimal power. Then, the models
predict the allocation power for the last requesting SU. See
Fig. 11(a), which shows the performance of various ML
algorithms in assigning the power to the last SU. We see that
DeepAlloc easily outperforms the otherML approaches by
a large margin. Also, not shown for clarity, but IP-Based
had a poor Aerr of 21.6dB and SH-Alloc had a Aerr’s of
7.5dB.

2) CONCURRENT SUS: SINGULAR VS. SIMULTANEOUS
ALLOCATION
We now compare our approaches for handling concur-
rent SUs (§III-F), viz., DeepAlloc-Greedy,

FIGURE 12. (a) Total allocated power, and (b) Fairness metric, in a
four-channel setting with multiple SUs.

DeepAlloc-NN, and DeepAlloc-RNN; recall that the
latter two approaches handle SUs simultaneously. We com-
pare these algorithms in terms of (i) Average absolute-
difference wrt to the ground truth (i.e., the output of
the Binary-Alloc heuristic); (ii) Fairness, in terms of
the ratio of maximum to minimum power allocated to
an SU; a lower value suggests a more fair allocation.
(iii) Overall spectrum utilization, in terms of the total data
rate achievable which is estimated as follows. For each SU,
we assign a receiver in a random location around the SU
(within 100m), calculate the total interference from PUs
and other SUs at the receiver, and estimate the achievable
data rate using Shannon’s capacity law. See Fig. 11(b)-(d).
We observe that as expected the DeepAlloc-NN and
DeepAlloc-RNN approaches that allocate powers simulta-
neously outperform DeepAlloc-Greedy significantly in
all metrics, with DeepAlloc-RNN slightly outperforming
the DeepAlloc-NN approach too (except in the fairness
metric) which is not surprising as DeepAlloc-RNN has
much more input information.

3) MULTIPLE CHANNELS
In Fig. 12, we compare our multi-SU approaches (tailored
to multiple channels as described in §III-F) in the 4-channel
PU-Setting with PUs transmitting over all the channels
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FIGURE 13. Outdoor testbed. (a) PU, PUR, SU, SS devices. (b) Testbed area
(house backyard). Blue stars are the 17 sensors.

FIGURE 14. Testbed system overview, including the GNU-Radio based
PU-to-PUR communication system.

at all times. We allocate powers to 30 SUs. We observe
that DeepAlloc-RNN still achieves the best performance
in terms of total power allocation as well as fairness, with
DeepAlloc-RNN performing closely. With respect to the
single channel, the total power allocated is almost four times
(in Watts).

V. DEEPALLOC TESTBED IMPLEMENTATION
In this section, we implement and evaluate a complete testbed
system for our spectrum allocation system.We use the testbed
to collect training samples, which are then used to train
and evaluate the learned models. The testbed implementation
demonstrates the effectiveness of our techniques in a realistic
small-scale setting.

A. TRANSMITTER AND RECEIVER DEVICES USED
We use 4 USRP B200/B210 and 1 HackRF to play the role
of the 4 PUs and 1 SU, respectively. A spectrum sensor
(SS) is composed of an RTL-SDR dongle that connects to a
dipole antenna and is powered by a single-board computer
Odroid-C2. We deploy 17 of these spectrum sensors in
the testbed. See Fig. 13(a). To simulate PU receivers (i.e.,
PURs), we use the same RTL-SDR dongle and antenna but
power it by a laptop. Each PU is paired with one PUR,
and they are both powered by a single laptop. Overall,
we implemented a Python repository running on Linux that
transmits and receives signals and measures and collects
relevant parameters in real-time at 915 MHz ISM band at a
sample rate of 1 MHz. We built our custom communication
system based on GNU Radio for data communication
between PU and PURs, used to determine labels (see below).
See Fig. 14.

FIGURE 15. Testbed performance for increasing training set.

B. COLLECTING TRAINING SAMPLES
Recall that a sample in PU-Setting is comprised of
a sample of PUs’ parameters (location and power) and
the optimal power allocated to the SU. In SS-Setting,
a training sample is comprised of spectrum sensors’ received
power readings. The location of entities is available by using
a GPS dongle connected to the laptops as described below,
and the sensor’s received power is computed as follows.
First, we compute an FFT on the I/Q samples collected
within a time window to get a power spectral density (PSD)
plot. Then, we compute the area under the PSD curve over
the 1MHz channel of interest (see below), and finally, convert
the computed area to an appropriate unit.

Determining Labels (Optimal Power Allocated to SU).
We essentially do a binary search to estimate the optimal
power that can be allocated to SU. To determine whether PU
to PUR transmission is incurring any harmful interference
from SU, we have PU continuously streaming ASCII
messages over the 1 MHz bandwidth channel centered
at frequency 915.8 MHz, and check if the messages
are successfully received at the PUR. This end-to-end
communication system is implemented using GNU Radio.

C. TESTBED AREA AND SETTING
Due to the ongoing pandemic, the testbed was conducted
in the backyard of a private house. The whole area is
24m × 24m large, which is similar in size to the testbeds
considered in recent works [27], [52] for shared spectrum
systems. We divide the area into 100 grid cells where
each represents 2.4m × 2.4m. See Figure 13(b). We use
a GPS dongle that returns the location in (latitude and
longitude) and the program converts it into coordinates.
We determine the location of PU, SU, and the sensors with
the help of GPS dongles and manual observation. All the
Odroids and laptops are connected to an outdoor WiFi router
and communicate through ssh protocol. For training and
evaluation, the 17 sensing devices are placed on the ground
and are uniformly spread out. PUs and SU are randomly
placed in the area such that different regions of the backyard
are ‘‘covered’’. PUs’ power is randomly assigned within a
certain range.
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FIGURE 16. Evaluation of various aspects in the testbed.

D. RESULTS
First, we evaluate the performance of an increasing number
of training samples. See Fig. 15. We observe a similar
trend as in the previous section of large-scale simulation,
with DeepAlloc outperforming other algorithms with
a notable margin. In particular, the overall performance
of DeepAlloc is good, with 4-5dB error using only
500 training samples. The performance of all algorithms
is better in PU-Setting relative to the SS-Setting,
as in §IV. Note that IP-Based performs quite poorly in
this realistic setting, in spite of having knowledge of PU
information as well as SS readings, as it assumes an imprecise
propagation model. Finally, we evaluate our techniques to
handle various aspects, viz., false positive error, multi-path
effect, and synthetic samples in Fig. 16. Overall, we observe
a similar trend as in the large-scale simulations.

VI. CONCLUSION
We have developed an effective deep-learning technique
based on CNNs to learn the spectrum allocation function, and
have demonstrated its effectiveness via extensive large-scale
simulations as well as a small outdoor testbed. There are
many avenues for further improvement of our techniques.
First, one could easily pre-train the DeepAllocmodel with
a much larger number of pre-training samples; as our pre-
training samples can be automatically generated, this only
incurs additional computational cost but no additional field
training/deployment cost. Second, we could also use more
sophisticated models to generate high-fidelity pre-training
samples. Lastly, we could incorporate terrain information in
the image sheets to aid the learning process. These directions
form the focus of our future work.
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