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ABSTRACT
Circuit switched networks with high-bandwidth links are essential

to handling ever increasing traffic demands in today’s data cen-

ters. As these networks incur a non-trivial reconfiguration delay,

they are mainly suited for bursty traffic or large flows. To address

the reconfiguration delay vs. high-bandwidth tradeoff in circuit

networks, an essential traffic scheduling problem is to determine

a sequence of network configurations to optimally serve a given

traffic. Recent works have addressed this scheduling problem for

one-hop traffic in fully-connected circuit networks.

In this work, we consider the traffic scheduling problem in gen-

eral circuit networks with multi-hop traffic load. Such a general

model is essential for networks with indirect routes between some

nodes, e.g., for recently proposed wireless optical (FSO-based) net-

works, or to allow multi-hop routes for load balancing. In this

context, we develop an efficient algorithm that empirically delivers

high network throughput, while also guaranteeing a constant-factor

approximation with respect to an objective closely related to net-

work throughput. We generalize our technique and approximation

result to more general settings, including to the joint optimiza-

tion problem of determining flow routes as well as a sequence of

network configurations. We demonstrate the effectiveness of our

techniques via extensive simulations on synthetic traffic loads based

on published traffic characteristics as well as publicly available real

traffic loads; we observe significant performance gains in terms

of network throughput when compared to approaches based on

prior work, and very similar performance to an appropriate upper

bound.
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1 INTRODUCTION
Modern data centers support ever-increasing computation and stor-

age demand, as applications shift to the cloud. As inter-traffic of

data centers doubles every 12-15 months [33], there is a demand for

network architectures and switches that can handle ever increas-

ing traffic bandwidth. Packet-switched networks with electronic

(packet) switches offering a typical bandwidth of 10 or 40 Gbps

don’t seem enough to handle increasingly bandwidth-hungry data

centers. Thus, recent works have considered circuit-switched net-

works based on optical [24, 25, 36, 38] or wireless [18, 19, 21, 40]

links that connect optical links using circuit switches.

Circuit-switched architectures enable a dynamic topology tuned

to prevailing traffic patterns, and can provide high bandwidth (100-

200 Gbps [8]) at a lower cost, power, and reduced cabling complex-

ity [14]. However, circuit switches incur a reconfiguration delay

which could range from tens of microseconds to milliseconds [30],

during which they cannot carry any traffic. The reason for reconfig-

uration delay differs across different circuit-switching technologies:

delay in 60 GHz wireless [19, 40] links is caused by rotation of RF

antennas, while in FSO-based networks [21] and optical circuit-

switches [30] delay is caused by steering mirrors. In either case, the

high-bandwidth with reconfiguration delay combination makes the

circuit-switched networks particularly suitable for serving large

flows or bursts of traffic, which is a typical environment in data

centers [18]. On the other hand, packet switches are flexible, capa-

ble of making forwarding decisions at the granularity of individual

packets—making them suitable for sporadic traffic and latency sen-

sitive packets. Thus, it is natural to design hybrid circuit/packet

switch architectures [24, 29] wherein long bursty flows use circuit-

switched network while short flows use the packet switched net-

works.

In such hybrid or circuit switched networks, a fundamental traffic

scheduling problem arises that must be addressed: given a traffic

load, determine the sequence of circuit configurations in order

to maximize the traffic delivered via the circuit-switched network.

This circuit-switched traffic scheduling problem has been addressed

recently [25, 28, 36], but only in limited settings. In particular, prior

work considers only direct (single-hop) routing of traffic and thus

implicitly assumes a complete circuit-switched network; however, in
general, circuit network fabrics may not have a complete topology

and thus multi-hop routing may be unavoidable, e.g., in recently

proposed wireless optical architectures [18, 21]. Moreover, indirect

routing is also useful for load balancing [16, 28]. See §3 for further

discussion.
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In this work, we address the above limitations by considering

a general model of circuit-switched networks—as a general (i.e.,

not necessarily complete) bipartite graph over input/output ports

of network nodes. In this circuit network model, we consider the

problem of scheduling and routing general multi-hop traffic load.

Our focus in this paper is to develop efficient algorithms that deliver

high network throughput in practice, while also ensuring theoreti-

cal performance guarantees. However, performance guarantees in

terms of network throughput are particularly challenging in the

multi-hop setting. In this paper, we design algorithms that not only

yield high throughput empirically but also permit performance

guarantees in a closely related objective (total number of weighted

packet-hops traversed); such performance guarantees lend further

credence to its high empirical performance. In the above context,

we make the following contributions in this paper.

1. For the traffic scheduling problem in general circuit networks

with multi-hop traffic and given flow routes, we develop an

efficient algorithm to generate a sequence of network configu-

rations that empirically delivers high network throughput as

well as yields a constant-factor approximation guarantee in a

closely related objective (§4-5).

2. For the more general joint-optimization problem to select flow

routes as well as determine the sequence of network configura-

tions, we design a greedy-cum-backtracking algorithm which

also delivers a constant-factor approximate solution for the

special-case of two given routes choices per flow (§6).

3. We generalize our technique and approximation results to more

general network models such as networks with bidirectional

links or with multiple input and output ports per node (§7).

4. Over extensive simulations, we show that our developed tech-

niques outperform an approach based on a prior work by a

significant margin. More importantly, our techniques perform

close to an appropriate upper bound.

To the best of our knowledge, the multi-hop traffic scheduling

problem addressed in our paper has not been addressed before

([28, 36] do considermulti-hop traffic in circuit networks, but in very

limited settings, and [18, 21] consider localized reconfigurations;

see §2). Our work essentially addresses and solves the open problem

mentioned in [36] and [25].

2 RELATEDWORK

Zero or Moderate Reconfiguration Delay. Scheduling in cross-

bar switches is a well-studied problem, with traditional models

assuming zero or very small reconfiguration delay. E.g., prior works

have considered Birkhoff-von-Neumann decomposition problem [9]

of decomposing a given bipartite graph into matchings. Some other

works assumemoderate configuration delay in that they allow𝑂 (𝑛)
configurations, where 𝑛 is the number of nodes/flows, and with that

constraint, focus on other optimization objectives such as higher

link utilization [34], bounded packet delay [39]. Some works have

also addressed minimizing the number of reconfigurations [22]

without regard to the total time window.

One-Hop Traffic Load. For arbitrary reconfiguration delay, re-

cently some works have modeled the circuit-switched network as a

single𝑛×𝑛 crossbar switch, and considered scheduling of a one-hop

traffic load. In this context, [23, 25] design heuristics for the prob-

lem of minimizing the total evacuation time for the given traffic

load, and present heuristics. Among these, ADJUST [23] does not

benefit from traffic matrix sparsity and thus still requires around

𝑂 (𝑛) configurations, while Solstice [25] designs a greedy heuris-

tic based on Birkhoff-von-Neumann decomposition for scheduling

in hybrid networks. In the most related work, [36] designs an ap-

proximation algorithm for the problem of maximizing the traffic

throughput given a time window𝑊 . Our work is inspired by and is

a direct generalization of [36] in that we consider the same problem

as [36] but with multi-hop traffic load in a general circuit-switched

model. Finally, [37] consider online adaptive scheduling policies for

one-hop traffic in circuit networks and develop hysteresis-based

online policies with derived conditions under which they maintain

bounded queues. These online policies however require perfect

queue state information at every instant.

Multi-hop Traffic Load. To the best of our knowledge, the circuit-
network scheduling problem addressed in our paper for multi-hop

traffic has not been addressed before. The closest works are: (i) [36]

addresses routing a given multi-hop traffic load over a given se-

quence of configurations; (ii) Recently, [27, 28] have designed traffic-

agnostic schedulers for multi-hop traffic for their very specialized

circuit-switched networks; we compare our work to theirs in §8.

(iii) Works on FSO-based networks [18, 21] do address engineering

multi-hop traffic over a reconfigurable network, but their schemes

use localized reconfigurations (rather than global configurations, as

in our model) for online-arriving flows and have different objectives

(e.g., minimizing latency [18]).

3 NETWORK MODEL
We consider a data center network over 𝑛 network nodes, with

each node having a certain number of input as well as output port.

A node may represent a rack of servers, in which case the net-

work ports correspond to ports on the Top-of-Rack switches, or

a node may represent an individual server with ports. Our net-

work model is a hybrid network fabric which is a combination

of a high-bandwidth circuit-switched (typically, optical) network

and a low-bandwidth (e.g., an order of magnitude lower) packet-

switched electrical network. Each network node is connected to

both networks via ports. Our focus in this work is on determining

traffic schedules for the high-bandwidth circuit-switched network,

though our circuit network scheduling technique can easily be used

to develop an efficient scheme for the overall hybrid network (§7).

Our Network and Traffic Model. Prior works [25, 36] that con-
sider scheduling in circuit-switched networks have largely focussed

on single-hop traffic, and thus have implicitly assumed a network

with complete topology, e.g., networks with a single 𝑛 × 𝑛 crossbar

switch connecting the input and output ports. However, in general,

circuit switched network fabrics may not have a complete topology;

e.g., (i) FSO-based networks [18, 20, 21], where it may be infeasible

to have a complete topology, (ii) circuit network fabrics formed of

multiple optical switches [26–28]; note that its infeasible to connect

large data centers with a single optical switch due to their low

port count [8]. In such networks, indirect (multi-hop) routing is

unavoidable. In addition, multi-hop routing may also be useful for
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load balancing [35] (especially for skewed traffic [28]) and/or to

increase reachability with a smaller number of configurations [36].

To address the above limitations, in this work, we take a general

approach and model the circuit-switched network as a general
(not necessarily complete) bipartite graph over the input and output

ports, and consider general multi-hop traffic load (see below). More

formally, we represent the circuit network as a bipartite 𝑛 × 𝑛
graph 𝐺 over the 𝑛 network nodes, where an edge (𝑖, 𝑗) signifies
a potential link from the (output port of) node 𝑖 to the (input port

of) node 𝑗 . In the above model, each link in 𝐺 is thus implicitly

a uni-directional link; we consider bidirectional links and more

general graphs in §7.

Time Slots. As in most prior works [25, 36], we divide the time into

slots, with each slot corresponding to a packet transmission time on

the circuit switch. In each time slot, a packet may be transmitted

over each active link. This assumption of dividing times into time

slots allows us to abstract the scheduling problem sufficiently to

design algorithms with provable performance guarantees.

Configurations, Reconfiguration Delay (Δ). In any time slot, only

a set of links that form a matching of 𝐺 can be active, since within

a circuit network, each input/output port can have at most one

active connection (we allow multiple ports/node in §7). A network

configuration is denoted as (𝑀,𝛼), where𝑀 is a matching in𝐺 and

𝛼 is the number of time slots for which the set of links in 𝑀 are

active. To change the set of active links, the circuit network must

be reconfigured completely;
1
this incurs a reconfiguration delay

which can be of the order of tens of microseconds [24, 30] to a

few milliseconds. We represent this delay in terms of Δ number of

time slots. In addition, we use the notation ⟨, . . . , ⟩ to represent a

sequence of configurations.

Traffic Load. We represent the traffic load between the nodes as a

set of traffic flows, where each flow is represented by:

⟨ID, size, source, destination, routes⟩.

Above, the size parameter is in number of packets, and the routes
is a set of potential routes (to choose from) between the source

and destination with each route represented as sequence of nodes

⟨source, 𝑥1, 𝑥2, . . . , 𝑥𝑙 , destination⟩ such that for each 𝑖 , output port

of 𝑥𝑖 is connected to the input port of 𝑥𝑖+1 in the network graph 𝐺 .

Also, we use D to denote the maximum length of any flow route.

Diameter of most realistic networks is small (2-4); thus, we can

assume D to be equally small.

Controller and VOQs. We assume a centralized (possibly, multi-

core) controller which has access to the traffic load, on the basis

of which the schedule of network configurations is determined.

The packets at each output port are organized into virtual-output-

queues [31] (VOQs) which hold packets destined to different ports.

Within each VOQ, packets may be prioritized based on certain

packet parameters, such as flow ID, packet weight, etc. At each

network node, output port(s) are connected to the input port(s)—

thus, an intermediate node can channel the traffic received on its

input port(s) to the appropriate VOQs of its output port(s), for

transmission in subsequent configurations or time slots.

1
FSO-based networks do allow “local” reconfiguration. Traffic scheduling problem in

such circuit networks with local reconfigurations is deferred to our future work.

3.1 Multi-Hop Scheduling (MHS) Problem
We now define the addressed MHS problem. We start with an infor-

mal formulation and discuss the multi-hop challenges.

Informal Formulation and Multi-Hop Challenges. Given a

circuit-switched network 𝐺 and traffic 𝑇 , our traffic scheduling

problem (denoted as MHS) is to determine a sequence of configura-

tions that is able to “serve” most of the given traffic within the given

time window. For the special case of one-hop traffic load 𝑇 , [36]

gives a greedy approximation algorithm Eclipse that maximizes

the number of packets delivered, and leaves the multi-hop traffic

case as an open problem. Designing an efficient algorithm for the

multi-hop case is challenging, because the objective of maximizing

the network throughput (i.e., the number of packets delivered) does

not remain “submodular” (see §5), and hence, a greedy algorithm

can perform arbitrarily bad. In addition, the multi-hop generaliza-

tion makes selecting the best configuration at each greedy iteration

becomes challenging due to many multi-hop aspects, e.g., due to

non-uniform route lengths and the fact that a packet can traverse

multiple hops in a single configuration. Finally, a multi-hop traffic

scheduler also entails choosing the route for each flow.

MHS Problem. Consider a set 𝑁 of 𝑛 nodes, and a circuit-switched

network over 𝑁 represented by a bipartite graph 𝐺 = (𝑁, 𝑁 ) be-
tween the given set of nodes, with a reconfiguration delay of Δ
time slots. We are given a traffic load 𝑇 and a window of𝑊 time

slots. The MHS problem is to determine a sequence of configurations

(𝑀1, 𝛼1), (𝑀2, 𝛼2), . . . and routing of given packets through them,

such that the network throughput (the number of packets delivered

to their final destination) is maximized, under the constraint that∑
𝑘

(𝛼𝑘 + Δ) ≤𝑊 .

The above MHS problem is easily NP-hard, as the special case

of one-hop traffic load is known to be NP-hard [36]. We address

more general network graphs (e.g., multiple ports per node) in §7.

The below example illustrates traversal of packets and network

throughput for a given sequence of configurations; these terms get

formalized in §4.

Example 1: Packet Traversal Through Configurations; Net-
workThroughput.Consider the example in Figure 1, which shows

a graph𝐺 , traffic𝑇 , and a sequence of configurations (not necessar-

ily optimal) for a total𝑊 of 300 (here, we assume a reconfiguration

delay of 0). Here, we assume a single route for each flow. Thus, each

entry in𝑇 gives the flow ID, number of packets, and the flow route,

with the row and column representing the source and destination

respectively. Note that after the first configuration, there are 150

packets “situated” at node 𝑎 waiting to go to node 𝑏, of which 100

packets are chosen to be routed in the second configuration; this

choice of packets can be arbitrary, but, in this example, let us prior-

itize the packets by flow ID. Thus, as the (𝑎, 𝑐)-flow has the lower

ID, the second configuration routes the 100 (𝑎, 𝑐)-flow packets. The

overall solution can now be seen as routing the entire (𝑑, 𝑏)-flow
via first and fifth configurations, the entire (𝑐, 𝑎)-flow via the third

and fourth configurations, and routing the 100-packets of (𝑎, 𝑐)-
flow to the intermediate node 𝑏 via the second configuration. Thus,

while the total number of delivered packets is 100. Note that the

optimal solution (not shown) is the sequence of configurations:
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Figure 1: MHS Example.

(𝑀1 ∪𝑀3, 50), (𝑀4 ∪𝑀5, 50), (𝑀2, 100), ((𝑏, 𝑐), 100), which delivers

all the packets to their destinations.

4 OCTOPUS APPROXIMATION ALGORITHM
In this section, we design an efficient algorithm, called Octopus,
for the MHS problem. At a high-level, Octopus implicitly strives to

optimize an objective that is closely related to network throughput.

As mentioned before, such a strategy facilitates developing tech-

niques that deliver high network throughput in practice, while also

yielding performance guarantees in a closely related objective and

thus confirming its high empirical performance. We first state two

assumptions made temporarily for clarity of presentation.

Two Assumptions (Relaxed Later). For sake of clarity of presenta-
tion, we make two assumptions for now and relax them later: (i)
Each individual packet traverses at most one hop during a config-

uration; we relax this assumption in §5. (ii) For each traffic flow,

there is only one route available. Single routes represents the case

when either the route is unique or has been independently deter-

mined via standard traffic engineering techniques. We relax this

assumption in §6.

Optimization Objective 𝜓 . Recall that the objective of our MHS
problem is to maximize the throughput, i.e., the number of packets

delivered. However, this objective is not submodular for multi-hop

traffic load, which makes design a provably efficient algorithm chal-

lenging. To circumvent this challenge, we consider an optimization

objective that is “monotonic,” “submodular,” and, equally impor-

tantly, also results in high network throughput. Keeping the above

in mind, we consider the optimization objective of maximizing the

total number of hops traversed by the packets in the given traffic

load 𝑇 . Also, since each flow route may have a different number

of hops, we assign a weight to each packet equal to the inverse

of the total number of hops in its flow route. Note that this chosen
objective is merely to guide design of an efficient algorithm, and our
evaluation metric is still network throughput.

More formally, let S be a sequence of configuration, and for each
packet 𝑝 , let 𝑓 (𝑝, S) be the number of hops traversed by 𝑝 in S and

𝑤𝑝 be the weight of 𝑝 as defined above. Then, the objective value

of the solution S is denoted by𝜓 (S) and is given by:

𝜓 (S) =
∑
𝑝∈𝑇

𝑓 (𝑝, S)𝑤𝑝 . (1)

We discuss computation of the function 𝑓 later.

Relationship to Throughput. It is easy to see that the objective func-

tion𝜓 does maximize the throughput, if we assume that the final

solution leaves zero packets at intermediate nodes—because then,

𝑓 (𝑝, S) is either 0 or 1/𝑤𝑝 for each packet 𝑝 . In §8, we observe that

the number of undelivered packets is indeed small for expected

traffic loads, and explore a simple strategy to minimize it further.

More importantly, packets undelivered after one application of the

algorithm can be considered for continued routing in the next time

window; thus, undelivered packets do not result in packet losses.

Packet Prioritizing Scheme. Our proposed Octopus algorithm uses

a fixed scheme for prioritizing packets over an active link: first

by weight, then by flow ID, as discussed later and also illustrated

in Example 1. As will be apparent later, such a scheme uniquely
determines the exact routing schedule of the packets from a given

sequence of configurations; this obviates the need to include such

packet-level details as a parameter to the objective function𝜓 or in

the output of the MHS problem.

Objective𝜓 in Example 1. Consider again the Example 1 and Fig-

ure 1. Therein, it is easy to see that the objective value𝜓 of the given

solution is 150. For the optimal solution, which is the sequence of

configurations (𝑀1 ∪𝑀3, 50), (𝑀4 ∪𝑀5, 50), (𝑀2, 100), ((𝑏, 𝑐), 100),
the𝜓 value is 200.

4.1 Octopus Algorithm Description
We start with describing the intuition behind our algorithm. As

mentioned above, due to the fixed routing scheme and given flow

routes, the Octopus algorithm needs to only deliver a sequence of

configurations.

Intuition and Design Outline. At a high-level, Octopus is basi-
cally a greedy algorithm that at each stage picks the “best” con-

figuration at that stage. The basic idea is to look at each possible

configuration (𝑀,𝛼) (of cost (𝛼 + Δ)) as “serving” the (weighted)
packet-hops that are traversed during (𝑀,𝛼). Now, if we iteratively
pick the best configuration (𝑀,𝛼), i.e., one that serves the packet-
hops with maximum total weight per unit cost, then we can hope

for a constant-factor approximation w.r.t. the objective 𝜓—if we

can show that the optimization objective 𝜓 is “monotonic” and

“submodular” (we define these terms formally in §5). To design an

algorithm as suggested above, we need to achieve the following

steps.

(1) Benefit of a Configuration. First, we need to formally define

and develop an algorithm to compute the benefit of a con-

figuration, at any given iteration. The benefit function is

essentially derived from the chosen objective function𝜓 .

(2) Picking the Best Configuration. Then, we need to develop an

efficient algorithm to select the configuration with the high-

est benefit per unit cost at each iteration. Note that, in our

context, there are infinitely many configurations available

for selection.
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(3) Approximation Algorithm. Based on the above, the approxi-

mation algorithm is merely an iterative procedure that picks

the best configuration in each iteration.We discuss necessary

details below.

(4) Performance Guarantee via Submodularity. Prove the objec-
tive function𝜓 to be monotonic and submodular. However,

as shown in §5,𝜓 is monotonic but not submodular; fortu-

nately, we are able to circumvent this challenge by showing

that the𝜓 function satisfies a weaker property that we can

use to prove an appropriate approximation factor.

We consider each of the above tasks below, with the last task de-

ferred to the following section.

Configuration Benefit and Cost. Let S be the sequence of con-
figurations already picked Octopus algorithm at the start of a given

iteration. Benefit of a configuration (𝑀,𝛼), at the stage when S, a
sequence of configurations, has already been picked by Octopus,
is denoted as B((𝑀,𝛼), S) and is essentially the improvement of

the objective𝜓 value due to (𝑀,𝛼), i.e.,
B((𝑀,𝛼), S) = 𝜓 (⟨S, (𝑀,𝛼)⟩) −𝜓 (S) . (2)

To illustrate the dependence of the benefit function over its second

argument, observe that in Example 1, B((𝑀4, 50),∅) is zero, while
B((𝑀4, 50), (𝑀3, 50))would be 25.More generally,B((𝑀4, 50), (𝑀3, 𝛼))
would be 𝛼/2 for any 𝛼 ≤ 50. This is because (𝑀3, 𝛼) configura-
tion routes 𝛼 packets of (𝑐, 𝑎)-flow over (𝑐, 𝑏), and thus make the

(𝑀4, 𝛼) useful for routing (𝑐, 𝑎)-flow packets over (𝑏, 𝑎).
Cost of a configuration (𝑀,𝛼) is defined as (𝛼 + Δ), as this is the

number of time slots consumed by the configuration.

Beyond the above definition of configuration benefit, we need to

develop an algorithm to actually compute it. To use Equation 2 to

compute benefit directly, we will have to first develop an algorithm

to compute the function 𝑓 (), used to define𝜓 in Equation 1. But, for

sake of clarity, rather than designing an algorithm to compute 𝑓 (),
we instead develop an algorithm to compute benefit using other

related notions. We define these notions below, before describing

how to compute a configuration’s benefit.

Remaining Traffic 𝑇 𝑟 ; Functions 𝑔(), and ℎ(). Remaining traffic load

𝑇 𝑟 essentially represents the current status of the packets and flows
in the network, after the packets have been routed via S. Similar

to 𝑇 , 𝑇 𝑟 is represented as a set of traffic subflows, with each sub-
flow represented as ⟨flowID, size, remainingRoute⟩. Note that
𝑇 𝑟 may have multiple subflows with the same flow ID.

Given 𝑇 𝑟 , for each link (𝑖, 𝑗) ∈ 𝐺 , we define 𝑔(𝑖, 𝑗, 𝛼) as the
maximum weight of 𝛼 packets in𝑇 𝑟 that are situated at 𝑖 with next

hop (𝑖, 𝑗). As shown in Figure 2, 𝑔(𝑖, 𝑗, 𝛼) can be easily computed

by first sorting the packets by their weight, and taking the weight

of the top 𝛼 packets. The value 𝑔(𝑖, 𝑗, 𝛼) is essentially the maximum

weight of packets that can be routed over (𝑖, 𝑗) by a (𝑀,𝛼) where
(𝑖, 𝑗) ∈ 𝑀 .

Finally, for each link (𝑖, 𝑗) ∈ 𝐺 , we define ℎ(𝑖, 𝑗, 𝑘) as the number
of packets in 𝑇 𝑟 of weight 1/𝑘 situated at 𝑖 with the next hop of

(𝑖, 𝑗). We will use this notion of ℎ() to determine the set of 𝛼 ’s to

consider for computing the best configuration. See Figure 2.
Computing Benefit B((𝑀,𝛼), S). Note that benefit B((𝑀,𝛼), S) of
configuration (𝑀,𝛼), when S has been already selected, is the max-

imum weight of the packets that can traverse over the links in 𝑀

Packets with next-hop (i,j)
SORTED by WEIGHT

g(i, j, α) = 
total weight 
of top α 
packets

h(i, j, 1) 

h(i, j, 3) 

h(i, j, 4) 

α’s to 
consider

Figure 2: Functions 𝑔() and ℎ(), and set of 𝛼 values to con-
sider, for a link (𝑖, 𝑗).

in 𝛼 time slots. Thus, B((𝑀,𝛼), S) can be computed as the sum of

𝑔(𝑖, 𝑗, 𝛼) values for links (𝑖, 𝑗) in𝑀 . Overall, the the steps to com-

pute B((𝑀,𝛼), S) are: (i) Compute 𝑇 𝑟 from S as discussed below,

(ii) Compute 𝑔(𝑖, 𝑗, 𝛼) for each (𝑖, 𝑗) ∈ 𝑀 , and then, (iii) Use the

equation below.

B((𝑀,𝛼), S) =
∑
(𝑖, 𝑗) ∈𝑀

𝑔(𝑖, 𝑗, 𝛼) . (3)

Computing or Updating 𝑇 𝑟 . Originally, when no configuration has

been scheduled, 𝑇 𝑟 is just the original traffic load 𝑇 . To compute

𝑇 𝑟 for a given sequence S, we update it iteratively for each config-

uration (𝑀,𝛼) in S as follows. For each link (𝑖, 𝑗) ∈ 𝑀 , we find the

packets in current (before (𝑀,𝛼) is added) 𝑇 𝑟 that are situated at 𝑖

and whose next hop is 𝑗 , sort them by their weights, pick the top 𝛼

packets, and “route” them over (𝑖, 𝑗) to update𝑇 𝑟 . Here, routing the
selected packets essentially means adding subflows and/or updating

subflow parameters in𝑇 𝑟 appropriately (we skip the tedious details).

Note that the set of packets picked above for routing may not be

unique, as we saw in routing packets via (𝑀2, 100) in Example 1. To

resolve this potential non-deterministic behavior (and thus, ensure

accurate computation of later benefit values), we use a simple and

scheme of prioritizing packets based on flow ID (among packets of

the same weight). Thus, for the above routing of packets over (𝑖, 𝑗),
we first sort the relevant packets by weight and then flow IDs, and

then pick the top 𝛼 packets.

Selecting the Best Configuration.We now describe how to pick

the configuration (𝑀,𝛼)with themaximumvalue ofB((𝑀,𝛼), S)/(𝛼+
Δ), highest benefit per unit cost, for a given schedule S. Using in-
sights from [36], our technique consists of the following steps.

(1) First, we note that we only need to consider a small number

of 𝛼 values. In particular, we claim that, for a given 𝑇 𝑟 , we

only need to consider 𝛼 ’s that are of the form
∑𝑚
𝑘=1

ℎ(𝑖, 𝑗, 𝑘)
for some link (𝑖, 𝑗) ∈ 𝐺 and a positive integer𝑚. We defer the

formal proof to the Appendix; see Figure 2 and the psuedo-

code in Procedure 1. The restriction to the above set of 𝛼

values is essentially ensured by the fact the benefit-per-unit-

cost function is monotonic in 𝛼 in between the above set of

values, and thus, the B function’s maxima occurs at to one

of these 𝛼 values.

(2) Second, note that by Equation 3, for a given 𝛼 , the best con-
figuration (𝑀,𝛼) can be computed by just finding the maxi-

mum weighted matching in a weighted bipartite graph 𝐺 ′

where 𝐺 ′ is the weighted version of the network graph 𝐺

with weight of 𝑔(𝑖, 𝑗, 𝛼) assigned to each link (𝑖, 𝑗). This is
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because 𝑔(𝑖, 𝑗, 𝛼) is the maximum weight of packets that can

be routed over (𝑖, 𝑗), for a given 𝛼 .
See Procedure 2 for the overall pseudo-code.

Procedure 1: SetOfAlphas(𝐺 , 𝑇 𝑟 )
Data: Network Graph 𝐺 , Remaining Traffic Load 𝑇 𝑟

Result: Set of 𝛼 ’s to consider in Procedure 2

1 A ← ∅;
2 for (𝑖, 𝑗) ∈ 𝐺 do
3 for 𝑘 = 1 to D do
4 ℎ(𝑖, 𝑗, 𝑘) = number of packets in 𝑇 𝑟 with weight 1/𝑘

that are situated at 𝑖 to go to next-hop 𝑗 ;

5 end
6 for 𝑘 = 1 to D do
7 A = A ∪ (ℎ(𝑖, 𝑗, 1) + ℎ(𝑖, 𝑗, 2) . . . ℎ(𝑖, 𝑗, 𝑘);
8 end
9 end

10 return A;

Procedure 2: BestConfiguration(𝐺 , 𝑇 𝑟 )
Data: Network Graph 𝐺 , Remaining Traffic Load 𝑇 𝑟

Result: (𝑀,𝛼) with most benefit per unit cost.

1 𝑢 ← 0;

2 A = Set of 𝛼 ’s to consider for 𝑇 𝑟 ; /* See Figure 2 */;

3 for 𝛼 ∈ 𝐴 do
4 𝑔(𝑖, 𝑗, 𝛼) = Maximum weight of 𝛼 packets in 𝑇 𝑟 situated

at 𝑖 to go to next-hop 𝑗 ;

5 𝐺 ′ ← weighted graph from 𝐺 with a weight of

𝑔(𝑖, 𝑗, 𝛼) on link (𝑖, 𝑗);
6 𝑀 ′ ← maximum weighted matching in 𝐺 ′;

7 𝑦 =
weight of 𝑀′

(𝛼+Δ) ;

8 if 𝑦 > 𝑢 then
9 𝑢 ← 𝑦;

10 𝑀 ← unweighted𝑀 ′;
11 𝑠 ← (𝑀,𝛼);
12 end
13 end
14 return 𝑠;

Octopus Algorithm. Based on the above concepts and procedures,

our overall Octopus algorithm can be simply described as follows.

The Octopus Algorithm goes through iterations, and in each itera-

tion, it (i) picks the configuration (𝑀,𝛼) with the highest benefit

per unit cost, and (ii) updates the 𝑇 𝑟 as described above. The algo-

rithm stops as soon as the entire traffic is served, or the total cost

of the configurations exceeds𝑊 ; in the latter case, to ensure that

the total solution cost is at most𝑊 , we reduce the number of time

slots of the last configuration appropriately.

Octopus Time Complexity. Let |𝑇 | be the total number of flows

in 𝑇 . Then, the maximum number of subflows in 𝑇 𝑟 at any stage

is at most |𝑇 |D. Thus, the overall time complexity of Octopus is

𝑂 ( |𝑇 |2
√
𝑛D2𝑊

Δ log𝑊 ), as there are at most𝑊 /Δ iterations, and

in each iteration, there are at most |𝑇 |D2 𝛼 ’s and thus calls to

maximum weight matching, each of which takes 𝑂 ( |𝑇 |
√
𝑛 log(𝑊 ))

time [13].
2
However, of most practical significance is the time

taken to execute a single iteration—since the iterative nature of

Octopus means that we only need to compute and implement

one iteration at a time; in other words, each iteration can be com-

puted while the traffic is actually being routed using the configu-

ration output by the previous iteration. Now, since computation

of weighted matchings within each iteration can be run in parallel

on a large multi-core machine, each iteration of Octopus can be

computed in 𝑂 ( |𝑇 |
√
𝑛 log(𝑊 )) time which can be approximated

to 𝑂 (𝑛1.5 log(𝑊 )) as the traffic matrix 𝑇 is typically sparse with

|𝑇 | = 𝑂 (𝑛). Thus, each iteration can be executed in a few millisec-

onds (see §8) even for 𝑛 = 1000. To reduce the run time further,

one can employ an approximation scheme for the weighted match-

ing; in §8, we show that the simple greedy approximation for the

weighted matching can be executed in a fraction of a millisecond

for 𝑛 = 1000, with only a minimal degradation in performance.

5 OCTOPUS APPROXIMATION PROOF
Iterative greedy algorithms are known to yield constant-factor

approximations, if the underlying objective function is monotonic

and submodular. Below, we discuss why our objective function

𝜓 is not submodular, and then, use the derived insight to prove

a weaker form of submodularity which is sufficient to derive an

approximation factor.

Recall that, in our context of MHS problem, an MHS schedule/solution
is a sequence (rather than a set) of configurations. Thus, we need

slightly different notions of monotonicity and submodularity than

the traditional notions which are defined for functions over sets.

Monotonicity of𝜓 .We start with addressing the monotonicity of

the objective function 𝜓 , which informally says that prefixing or

appending a sequence of configurations with another sequence can

only increase the objective value (we omit the proof here).

Lemma 1. The objective function𝜓 is monotonic, i.e.,𝜓 (⟨S1, S2⟩) ≥
max(𝜓 (S1),𝜓 (S2).

Non-Submodularity of𝜓 .The objective function𝜓 (over sequences)

would be considered submodular if

𝜓 (⟨S, (𝑀,𝛼)⟩) −𝜓 (S) ≥ 𝜓 (⟨S′, (𝑀,𝛼)⟩) −𝜓 (S′)
for any two sequences S and S′ such that S is a prefix of S′. The
above equation can also be written in terms of the benefit function

B:
B((𝑀,𝛼), S) ≥ B((𝑀,𝛼), S′), (4)

which essentially says that the benefit of a configuration never in-
creases with the growth of S (i.e., over the iterations of the Octopus
algorithm). Unfortunately, the above condition does not hold for

the case of multi-hop traffic load for the objective function𝜓 . For

instance, as mentioned before in Example 1, benefit of configuration

2
In §8, we also evaluate a binary-search scheme which reduces the number of weighted

matchings needed in every iteration from |𝑇 |D2
to (logmin(𝑛,𝑊 )) by using a binary

search over the range of flow sizes in𝑇 . In our evaluations, we observe that this binary-

search approach incurs only a minimal loss in performance.

36



Near-Optimal Multihop Scheduling in General Circuit-Switched Networks CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

(𝑀4, 𝛼) increases with selection of (𝑀3, 50) —making the objective

function 𝜓 is not submodular. Note that the number-of-packets-

delivered objective is also not submodular (see Example 1).

Weaker Submodularity andApproximationResults.The above
Eqn. 4 can be shown equivalent to:

B(⟨𝑂1,𝑂2, . . . ,𝑂𝑘′⟩, S) ≤
𝑘′∑
𝑗=1

B(𝑂 𝑗 , S) ∀𝑘 ′

where we have used an extended definition of the B function, by

allowing a sequence of configurations in the first argument. Though

the B function does not satisfy the above equation (as 𝜓 is not

submodular), we claim that B satisfies a slightly weaker condition—

see the below lemma.We use the lemma to prove the approximation

result of Octopus Algorithm. We defer the proofs to Appendix.

Lemma 2. Let S be a sequence of configurations, and𝑂1,𝑂2, . . . ,𝑂𝑘′

be a set of 𝑘 ′ configurations. We claim that:

B(⟨𝑂1,𝑂2, . . . ,𝑂𝑘′⟩, S) ≤ D×
𝑘′∑
𝑗=1

B(𝑂 𝑗 , S) .

Theorem 1. The Octopus algorithm delivers a solution whose
objective 𝜓 value is at least (1 − 1/𝑒1/D ) 𝑊

𝑊 +Δ times that of the
optimal𝜓 possible.3

Note that
𝑊

𝑊 +Δ ≈ 1 for large 𝑊 , and D is expected to be a

very small constant (about 2-4; see §3). Assuming
𝑊

𝑊 +Δ ≈ 1, the

approximation ratios for D = 1,2,3,4 are 63%, 39%, 28%, and 22%.

Traversing Multiple Hops in a Configuration. Recall our first
assumption that a packet traverses at most one hop in any con-

figuration; here, we relax this assumption. Note that traversing

multiple hops in a configuration could be useful. For instance, in

Example 1, if the first configuration contains both links (𝑑, 𝑎) and
(𝑎, 𝑏), then all the packets of (𝑑, 𝑎, 𝑏)-flow can be delivered to their

final destination in just a single configuration. In terms of feasibility,

note that network switch latency can be as low as a few 100s of

nanoseconds [11], while a time slot in our context is expected to be

on the order of a few microseconds (see §8). Thus, the time needed

to transfer a packet from an intermediate node’s input port to an

appropriate VOQ of its output port, should be at most 1-2 time slots.

The biggest challenge in allowing multiple hops per configura-

tion is in ensuring a performance guarantee; more specifically, the

challenge is in computing the best configuration—as configuration

(𝑀,𝛼)’s benefit would now depends on themulti-hop paths enabled
by𝑀 with these multi-hop paths from different flows “competing”

for the common links in 𝑀 . We address the above challenge by

using a greedy algorithm to compute an approximate (rather than

optimal, as before) matching for a given 𝛼 . It is well-known [6] that

a greedy algorithm yields a a 1/2-approximate weightedmatching to

the traditional maximum-weighted matching problem. However, in

our context wherein the weights on the edges come from multi-hop

flows, the 1/2-approximation factor doesn’t hold. In our context, we

propose a greedy matching algorithm that essentially creates the

approximate matching (for a given 𝛼) by adding edges iteratively,

by picking the edge that increases the benefit of the configuration

3
The corresponding optimal solution need not prioritize the packets by flow IDs, as in

Octopus.

by most at each stage. It can be shown (we omit the proof) that

such a greedy matching algorithm yields a
1

2D -approximate config-

uration. This introduces an additional factor of
1

2D in the exponent

of the original approximation factor, and thus, yielding an overall

approximation factor of (1 − 1/𝑒1/(2D2) ) 𝑊
𝑊 +Δ .

Theorem 2. When a packet may traverse multiple hops within a
configuration, the modified Octopus algorithm as described above de-
livers a solution whose objective𝜓 value is at least (1−1/𝑒1/2D2 ) 𝑊

𝑊 +Δ
times that of the optimal value possible.

6 TRAFFIC ROUTING AND SCHEDULING
In this section, we consider a more general joint-optimization prob-

lem of choosing flow routes as well as determining the sequence of

network configuration, and thus, relaxing the second assumption

made in §4. In particular, we now associate each traffic flow with

with multiple possible routes and the general MHS problem is to

choose a route for each flow as well as the sequence of configura-

tions over which to route the flows over the chosen routes. All the

terminology from previous sections holds here too.

Octopus+ Algorithm. We refer to our generalized algorithm as

Octopus+. We first describe our Octopus+ algorithm, under the

following two assumptions: (i) For each flow, no two routes in the

parameter routes have the same first hop. (ii)We do not “backtrack”

on the choice of a route, i.e., for each packet, the choice of its route
is made at its first hop and is final. We relax these assumptions

momentarily. Under these assumptions, the Octopus+ algorithm

remains largely same as the Octopus algorithm, except for the way

𝑔(𝑖, 𝑗, 𝛼) and ℎ(𝑖, 𝑗, 𝑘) are computed; we describe these changes

below. These changes reflect the choice a packet has at the source: to
pick one of the given set of routes (or the first hop, as per assumption

(i) above). In essence, when computing 𝑔(𝑖, 𝑗, 𝛼) and ℎ(𝑖, 𝑗, 𝑘) values
at link (𝑖, 𝑗), for packets with source 𝑖 we take into consideration

all the potential first hops. Formally, the changes to computing 𝑔()
and ℎ() functions is as follows.

(1) ℎ() Computation. In Octopus+, when determining the set of

𝛼 ’s to consider, we consider all potential first-hops simulta-

neously, for packets at their original source. Thus, ℎ(𝑖, 𝑗, 𝑘)
is now computed as the number of packets in𝑇 𝑟 with weight

1/𝑘 that are either: (i) situated at their original source 𝑖 with

(𝑖, 𝑗) as the first hop of one of the routes available, or (ii)

situated at an intermediate node 𝑖 to go to the next hop 𝑗 .

(2) 𝑔() Computation. In Octopus+, we compute 𝑔(𝑖, 𝑗, 𝛼) in a

similar way as ℎ(𝑖, 𝑗, ∗)’s above. That is, we define and com-

pute 𝑔(𝑖, 𝑗, 𝛼), as the maximum weight of 𝛼 packets in 𝑇 𝑟

that are either (i) situated at their original source 𝑖 with (𝑖, 𝑗)
as the first hop of one of the routes available, or (ii) situated

at an intermediate node 𝑖 to go to the next hop 𝑗 .

In addition, 𝑇 𝑟 needs to be updated appropriately to reflect the

(final) choice made by the packets at their first hop. Note that in

the above, different subflows of a flow may take different route

choices—resulting in out of order packets at the destination, which

can be handled by packet reordering at the destination [10].
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Figure 3: Backtracking.

Backtracking. We now en-

hance our above algorithm

by allowing packets to “back-

track” on their choice of route.

Note that Octopus+ algorithm
runs only offline, and is not ac-

tually routing the packets in

real-time. Thus, any “routing”

being done within Octopus+
algorithm is merely for bookkeeping purposes to generate a sched-

ule, and similarly, any backtracking is merely rethinking of the

schedule/solution to be delivered. We exploit backtracking in

Octopus+, since it is essential to guaranteeing a constant-factor

approximation bound. Fortunately, limited backtracking, i.e., only

to a direct (one-hop) route, is sufficient. More formally, if a packet 𝑝

with source 𝑠 and destination 𝑑 has been routed to an intermediate

node 𝑦 (on some chosen route) via an already chosen sequence S
of configurations, then, in the next configuration (𝑀,𝛼), we allow
𝑝 to be routed directly via link (𝑠, 𝑑) if (𝑠, 𝑑) ∈ 𝑀 . In such a case,

𝑝’s prior routing from 𝑠 to 𝑦 in S is annulled.4 See Figure 3.
To incorporate backtracking to a direct link as described above

into Octopus+, we furthermodify the above computations ofℎ(𝑖, 𝑗, 𝑘)
and 𝑔(𝑖, 𝑗, 𝛼) at (𝑖, 𝑗) by also considering packets whose source is

𝑖 and destination is 𝑗 irrespective of where they may be currently

situated in𝑇 𝑟 . In addition, when updating𝑇 𝑟 , we prioritize routing

of packets on their direct link (𝑠, 𝑑) compared to them being routed

over their next hop, say (𝑦,𝑦′), if both links (𝑠, 𝑑) and (𝑦,𝑦′) exist
in the selected configuration.

Allowing Routes with Common First Hops. Now, we discuss relax-

ing the other assumption made earlier: i.e., we allow routes pa-

rameter to contain routes with the same first hop. In this case, the

computation of 𝑔(𝑖, 𝑗, 𝛼) (and ℎ(𝑖, 𝑗, 𝑘)) could be incorrectly inflated
by a single packet contributing to a 𝑔(𝑖, 𝑗, 𝛼) value for each of its

route choice that contain (𝑖, 𝑗) as the first hop. The simple fix to

this issue is to ensure that in computation of 𝑔(𝑖, 𝑗, 𝛼) or ℎ(𝑖, 𝑗, 𝑘)
each packet is considered only once.

Approximation Result. Using techniques similar to the previous

section, we can show that the above described Octopus+ algorithm
delivers a constant-factor approximation solution, for the special

case when for each given flow, there are at most two routes, one of

which is a direct link. We defer the proof to Appendix.

Theorem 3. For the special case, wherein each traffic flow has at
most two route choices one of which is a direct link, the Octopus+
algorithm delivers a solution whose objective𝜓 value is at least (1 −
1/𝑒1/𝑐 ) ( 𝑊

𝑊 +Δ ) times that of the optimal value possible, where 𝑐 = D
if D ≤ 2 and 𝑐 = (4/3)D otherwise.

We evaluate Octopus+ for the general case in §8.

7 MORE GENERAL NETWORKS
More General Network Graphs.We now consider more general

circuit-switched network models—in particular, allowing more gen-

eral subsets of links (rather than just matchings) to be active at

4
In principle, we could reuse the freed up time slots due to annulment; however, we

do not exploit this optimization in Octopus+, for simplicity.

any instant. For simplicity, we focus here only on generalizing the

Octopus algorithm and state (without proof) the impact on the

approximation factor.

𝐾 Ports per Node. We now consider the network model, wherein

a node may have multiple input and output ports–thus, allowing

multiple links per node to be active simultaneously. E.g., in wireless

optical networks [21], each rack (node) can be connected to 10s of

wireless optical (FSO) transceivers. In such networks, any 𝑟 -regular

subgraph (i.e., a combination of 𝑟 matchings) over the racks/nodes

is a valid configuration, where 𝑟 is the number of input as well as

output ports per node. In this context, to compute the best configu-

ration for a given 𝛼 , we employ a greedy approach that iteratively

selects the best matching available, until 𝑟 disjoint matchings have

been selected, and returns the combination of these 𝑟 matchings.

Using similar proof techniques as in Theorem 1, we can show that

such a greedy algorithm yields a (1 − 1/𝑒)-approximate match-

ing. The overall approximation factor of the Octopus algorithm for

above then changes to (1 − 1/𝑒 (1−1/𝑒)/D ) 𝑊
𝑊 +Δ .

Bidirectional Ports per Node. In networks with full-duplex opti-

cal switches or with bidirectional wireless optical links (e.g., Fire-

Fly [21]), each node is connected to full-duplex ports and each link

when active is bidirectional. Such network architectures can be rep-

resented by general (not bipartite) undirected graphs over 𝑛 nodes,

and the valid configurations are matchings (with bidirectional links)

over the graph. To tailor Octopus algorithm for general graphs, we

need to compute maximum weighted matchings in general (rather

than mere bipartite) graphs. Rest of the algorithm remains the same

with its performance guarantee; the overall time complexity in-

creases by a factor of just

√
log𝑛 by using [17] for general graph

matching.

Scheduling in a Hybrid Network. Our algorithms can be easily

extended to a hybrid network comprised of a circuit network and

a packet (electrical) network as follows. Given a traffic load 𝑇 and

window𝑊 , first route as much of 𝑇 as possible over the packet

network, and then use Octopus or Octopus+ to route the remaining

traffic over the circuit network. The above strategy can be easily

shown to have the same performance guarantees as Octopus or

Octopus+ for circuit networks.

Makespan Minimization Problem. Our algorithms can also be

used to solve the makespan minimization problem of finding the

shortest window𝑊 to fully serve a given traffic load—using simple

binary search, yielding a 𝑂 (log |𝑇 |) (instead of a constant) approxi-

mation factor .

8 EVALUATION
In this section, we empirically evaluate the performance of our

developed techniques in terms of network throughput, i.e., the

number of packets delivered. We use traffic loads generated based

on published characteristics, as well as publicly available actual

traffic loads from Facebook and Microsoft data centers.

Simulation Setup.We use a simple custom packet-level simulator

that routes traffic synchronously, one packet transmission in each

time slot over each active link. Such a simulator is sufficient for our

context, due to our assumption of division of time into time slots.

Unless otherwise stated, we consider a circuit network over 100

network nodes each with a single input and output port, and use
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Figure 4: Packets delivered (%) for varying: (a) Number of nodes, (b) Reconfiguration delay, (c) Traffic skew (i.e., 𝑐𝑆 as a percent-
age of (𝑐𝑆 + 𝑐𝐿)), (d) Traffic sparsity (i.e., 𝑛𝐿 + 𝑛𝑆 )

𝑊 = 10, 000 and Δ = 20 time slots. We are implicitly considering

one microsecond time slots, corresponding to transmission time

for 100 Kbits (12.5 KB) packets over 100 Gbps links. Each data point

in the plots is an average over 10 random instances.

Traffic Load. We generate traffic loads similar to prior related

works [25, 36] based on traces from the University of Wisconsin [7]

and Alizadeh et al. [5]. In particular, we assume 4 large flows (𝑛𝐿)

and 12 small flows (𝑛𝑆 ) to each input or output port; these values are

for 100-node networks, and are changed linearly for other networks.

Note that a network of size 𝑛 has 𝑛 input ports and 𝑛 output ports.

Let 𝑐𝐿 (𝑐𝑆 ) be the total traffic carried by the large (small) flows on

each port; we use 𝑐𝐿 + 𝑐𝑆 =𝑊 = 10, 000, 𝑐𝐿 = 7000 (70% of total)

and 𝑐𝑆 = 3000. Using these parameters, we generate random traffic

load matrices exactly as in [36]. For each traffic flow, we assign a

random route in the network of 1 to 3 hops, with equal number of

flows getting 1/2/3 hops route.

Real Traffic Loads. In addition to the above generated traffic loads,

we also use traces from: (i) a Microsoft datacenter in the form of

traffic-matrix heatmaps [4] which determine the relative size of

flows between pairs of nodes, and (ii) three different Facebook

cluster types [2, 32] (Hadoop, front-end web server, and database

server). From the above loads, we randomly select 100 rows and

columns to create load for a 100 node network and then, scale the

flow size values such that the maximum value of a flow is 10,000

(𝑊 ).

Algorithms Compared. To the best of our knowledge, there have
been no prior work on the MHS problem of schedulingmulti-hop traf-

fic in circuit networks. Thus, for the case of single given route per

flow, we compare Octopus with the following Eclipse-Based ap-

proach based on [36], while for the case of multiple routes per flow,

we compare Octopus+ with a simple scheme based on Octopus
(as discussed later). The Eclipse-Based approach is as follows.

We first compute “one-hop traffic” 𝑇𝑜𝑛𝑒 from the given multi-hop

traffic by ignoring the ordering of hops in multi-hop paths, use

Eclipse (one-hop algorithm) over𝑇𝑜𝑛𝑒 to compute a near-optimal

sequence of configurations S𝑜𝑛𝑒 , and then, apply Eclipse++ [36]
(an algorithm to route multi-hop traffic over a given sequence of

configurations) over S𝑜𝑛𝑒 . Later, we also compare our Octopus
scheme with the traffic-agnostic scheme of [28].

Performance Metrics. We primarily focus on the metric of per-

centage of packets delivered to the destination, with respect to the

total number of packets in 𝑇 . In addition, we also report the Link
Utilization metric, primarily to analyze the source of through-

put efficiency of a scheme. The link utilization is the ratio of total

number of packets traversed to the sum of the number of active

links over all time slots.

Upper Bounds. To demonstrate the empirical near-optimality of

our techniques, we also derive two upper bounds.

• The first upper bound is an absolute upper bound of 66%

packets delivered from the generated traffic𝑇 ; this 66% value

is derived by observing that at most 10
6
hops can be traversed

in 10k time slots in a 100-node network, and there are about

10
6
total packets with equal number of packets for 1-hop, 2-

hop, and 3-hop routes. For the real-traffic loads, the absolute

upper bound is 100%.

• We also consider a tighter upper-bound, denoted by UB,
which is derived by running the following UB algorithm:

Compute 𝑇𝑜𝑛𝑒 , the unordered one-hop traffic (as defined

above) from the given multi-hop traffic matrix 𝑇 , and then

run Eclipse over it. Essentially, UB is the best achievable

performance by a polynomial algorithm for the MHS problem,

since the UB algorithm: (i) works with fewer constraints, and

(ii) uses the best approximation algorithm over the resulting

optimization problem.
5
For the packet-delivered metric, we

count a packet as delivered in UB only if all its hop have been
served (in any order).

Throughput Performance and Link Utilization. In the first set

of experiments, we compare the performance of algorithms in gen-

erated traffic loads for varying number of nodes (25 to 300), reconfig-

uration delay, traffic skewness, and sparsity. See Figures 4-5. Here,

to vary skew, we vary 𝑐𝑆/(𝑐𝐿 +𝑐𝑆 ) for a fixed (𝑐𝐿 +𝑐𝑆 ), and to vary
sparsity, we vary 𝑛𝐿 + 𝑛𝑆 for a fixed 𝑛𝐿/𝑛𝑆 = 1/3. We observe that

Octopus easily outperforms Eclipse-Based scheme by a signifi-

cant margin; the reason for this is that the Eclipse-Based scheme

has a very poor link utilization due to a poor choice of sequence of

configurations based on𝑇𝑜𝑛𝑒 . More surprisingly, Octopus performs

almost identical to the UB upper bound, with only a small gap with

the absolute upper bound of 66%. The performance trend for other

5
The one-hop version of the MHS problem is essentially a submodular function maxi-

mization problem with a cardinality constraint, which cannot be approximated better

than Eclipse’s approximation ratio of essentially (1− 1/𝑒) unless P=NP [15]. Strictly

speaking, this argument holds only for the𝜓 objective.
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Figure 5: Link utilization (%) for varying: (a) Number of nodes, (b) Reconfiguration delay, (c) Traffic skew (i.e., 𝑐𝑆 as a percentage
of (𝑐𝑆 + 𝑐𝐿)), (d) Traffic sparsity (i.e., 𝑛𝐿 + 𝑛𝑆 )

Figure 6: Performance over traffic from Facebook (FB) and Microsoft (MS) clusters.

varying parameters is as expected, except for the case of varying

skewness wherein the performance seems to improve slightly with

the increase in traffic carried by 𝑛𝑆 flows. Increase in skewness

with our chosen parameters essentially has an effect of making

the flow sizes uniform across 𝑛𝐿 and 𝑛𝑆 flows, which is likely the

reason for slightly improved performance. The binary-search vari-

ant Octopus-B (discussed later) performed near-identically with

Octopus (including for real traffic loads below in Figure 7(a)), but

has not been shown here for clarity.

Real Traffic Loads. We observe a similar pattern for the real traf-

fic traces obtained from Microsoft and Facebook data centers, as

described above. See Figure 6. Here, the percent of packets de-

livered is much than that for the generated traffic data due to

the much lighter traffic—as evidenced by a much higher value of

near-100% absolute upper bound. We see similar relative perfor-

mance for link utilization (not shown), with Octopus again outper-

forming Eclipse-Based and also closely matching UB confirming

Octopus’s effectiveness in choosing useful matchings. Note that

however the link utilization values are much lower than the gen-

erated traffic loads; the reason behind this is that the real traffic

load seem to be dominated by a very small number of large flows

which results in many links being unused in each matching. Such a

situation doesn’t arise even for low 𝐶𝑆 values in Figure 5(c), since

the total number of large flows is still sufficiently high, i.e., 𝑛𝐿 per

node and thus 𝑛𝐿 × 𝑁 .

Figure 7: Evaluating the issue of undelivered packets: (a)
Packets delivered as a percentage of objective value (𝜓 ), for
varying reconfiguration delay, and (b) Relative performance
of Octopus-e for varying average hop count.

EvaluatingUndelivered Packets.Wenow plot packets-delivered

as a percentage of the objective value𝜓 , to get an idea of the per-

centage of packets that are left undelivered by the algorithms. In

Figure 7(a), we see that the ratio is in the 80-90% range for Octopus,
indicating that the issue of undelivered packets is not significant.

Slightly worse ratio is observed for the UB scheme, as it likely ends

up serving later hops of certain packets without ever serving their

earlier hops; this is likely the reason for its inferior performance

compared to Octopus for FB-3 in Figure 6(a) and Figure 7(b) (see be-

low). More importantly, a high ratio for Eclipse-Based indicates
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that its poor performance in previous plots is not due to undelivered

packets, but largely due to poor link utilization.

Octopus-e Variant. To potentially mitigate the issue of undeliv-

ered packets, we evaluate a variant of Octopus, called Octopus-e,
wherein we assign a slightly higher weight to hops closer to the

destination.
6
In particular, we assign a weight of 1 + 𝑥𝜖 to a flow-

route’s hop that is 𝑥 hops away from the source, for some small 𝜖 ;

this is independent of the weights assigned to packets based on flow

route lengths as before. We evaluated Octopus-e, and observed

that Octopus-e performed near-identical to Octopus in the pre-

vious experiments plotted in Figures 4–6 over generated and real

traffic traces; we didn’t show Octopus-e in those plots, for sake of

clarity. The reason for Octopus-e not performing any better than

Octopus in previous experiments was due to sufficiently many one-

hop flows that giving higher precedence to later hops did not offer

much advantage.

Higher Number of Hops. To further investigate the performance

comparison of Octopus-e and Octopus, we consider a new setting

where we consider flows with higher number of hops on an average.

See Figure 7(b), where the traffic is as before, except that all the flows

have the same route length (varied from 1 to 3). Here, we clearly

see that Octopus-e results in a higher packets-delivered metric,

with the gap increasing with increase in average number of hops.

This shows the benefit of Octopus-e in such traffics. Interestingly,

we also see that Octopus and Octopus-e both outperform the UB,
likely due to the issue of undelivered packets (observe its worse

performance in Figure 7(a)) which is accentuated with increase in

average number of hops for reasons mentioned above.

Figure 8: Octopus vs. RotorNet Performance Comparison.

Performance Comparison with RotorNet [28]. We now com-

pare the performance of our Octopus algorithm with the traffic-

agnostic RotorNet [28] schedule which is not particularly suited

for our setting and problem—but the comparison shows the benefit

of taking the given traffic flows into consideration while designing

an efficient schedule. Contrary to our setting, RotorNet assumes a

complete bipartite graph over the input and output ports, but it can

still be applied to our MHS problem by assuming availability of all

edges anyway (for scheduling purposes). See Fig. 8 which shows

the throughput and link utilization comparison of Octopus with

RotorNet. As expected, RotorNet performs poorly in our setting.

The main reason for the poor performance of RotorNet is that it

uses many edges in each matching that are not carrying any flow

6
This weight assignment is done in the scheduler at controller, and hence does not

require any special packet-prioritization techniques at a switch.

traffic as evidenced by its very low link utilization. Other reasons

for its poor performance are: (ii) it uses a fixed and uniform dura-

tion (we used 10 × Δ [18]) for each matching, and (iii) it doesn’t

prioritize packets as Octopus does, i.e,. by assigning higher weights
to packets with shorter routes. Note that RotorNet’s key advantage

is that its controller is traffic agnostic and thus very simple and

decentralizable. RotorNet works well in complete networks where

it can (and does) route “most” packets via direct one-hop routes,

while exploiting 2-hop routes only “opportunistically.” However, in

our MHS problem, the flow routes are given/fixed and the multi-hop

flows can’t be routed directly (also, because the direct route may

not even exist in the network).

Figure 9: (a) Octopus-B Performance. (b) MHS problem with
multiple routes per flow.

Evaluating Octopus-B: Binary Search Over 𝛼 ’s. To evaluate the
time complexity vs performance trade-off, we implement and eval-

uate a variant called Octopus-B which does a binary search over

the 𝛼 ’s to try to find the best configuration, as suggested in §4.

Essentially, Octopus-B finds one of the maxima, not necessarily

the global maximum. As mentioned before, Octopus-B performed

near-identically to Octopus, for all data points in previous plots

i.e., Figures 4, 5, and 6, but not shown therein for clarity. However,

as an example, we show Octopus-B vs. Octopus performance for

varying reconfiguration delay in Figure 9(a). The near-identical

performance suggests that the benefit per unit cost function’s char-

acteristics are very amenable to a binary search for maximum. In

effect, the above observations help reduce the worst-case time com-

plexity by a factor of |𝑇 |D2
.

Evaluating Octopus+: Multiple Routes per Flow.We now eval-

uate the performance of Octopus+ when there are multiple routes

given for each flow. Neither Eclipsed-Based nor the previously

mentioned upper bounds apply here, so we compare Octopus+with
an approach that picks a route randomly for each flow and then

applies Octopus algorithm; we refer to this as Octopus-random
algorithm. We evaluate the algorithms for the generated traffic

loads above, except here, for each flow, we provide 10 different

route choices of varying lengths chosen uniformly between 1 and 3

hops. See Figure 9(b). It’s not surprising to see that Octopus+ easily
outperforms Octopus-random.

Execution Time. As mentioned in §4.1, the time taken by a single

weighted matching algorithm is of the most practical significance—

since Octopus only needs to be implemented and executed one it-

eration at a time and multiple matchings within an iteration can be

run in parallel. Optimal weighted matching in a bipartite graph has
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been studied extensively with the best known time complexity [13]

of 𝑂 ( |𝑇 |
√
𝑛 log(𝑊 )). In our experiments, we used an available C++

implementation [3] for the weighted bipartite matching, which can

take up to a few milliseconds for large 𝑛, on a 3.2 GHz desktop. The

run time could possibly be reduced using an optimized custom code

or other algorithms such as [17]. To demonstrate practical viability

of our techniques, we instead implemented a simple 2-approximate

greedy matching algorithm that adds edges in decreasing order of

weights. Since the weights in our context are integers and bounded

by𝑊 , this greedy algorithm can actually be implemented in linear

time using 𝑂 (max(𝑊, |𝑇 |)) space. An Octopus-G algorithm based

on the greedyweightedmatching scheme also incurs only aminimal

loss of performance. In Fig. 10, we plot execution times (of a single

iteration) and network throughput for the Octopus and Octopus-G
algorithms. We observe that Octopus-G’s iteration took about 650

microseconds for a 𝑛 = 1000 network (and 100, 0000 traffic flows),

and Octopus-G’s performance is very close (95% or above) to that

of Octopus. Thus, Octopus-G is practically viable on a supercom-

puter with sufficiently large number of cores.Wemake three further

remarks: (i) Due to edge weights being integral and bounded by

𝑊 , the 2-approximation greedy matching algorithm is incredibly

simple in our context: it involves merely updating and accessing a

𝑊 -size array. Thus, special-purpose computing cores could easily

reduce the run time significantly. (ii) Theoretically, the number of

cores required could be as high as |𝑇 |D2
which could be as high as

about 1.5 million for 𝑛 = 1000 andD = 3. However, supercomputers

with so many cores are feasible; e.g., the recent Cerebras Wafer

Scale Engine supercomputer delivers 400,000 programmable com-

pute cores [1]. (iii) More sophisticated approximation algorithms

for bipartite weighted matching exist with linear-time complexity

and near-optimal performance guarantees, with perhaps the most

promising being [12]. These may offer better performance and run

time than Octopus-G.

9 CONCLUSIONS
To the best of our knowledge, ours is the first work to address

the problem of determining a sequence of network (global) con-

figurations for multi-hop traffic in general circuit networks, and

essentially solves the open problem mentioned in [36] and [25].

There are two generalizations of our work that are very challeng-

ing and of significant interest: (i) Localized reconfigurations, e.g.,
in the context of recently proposed wireless optical architectures,

network reconfigurations are not necessarily global and specialized

scheduling algorithms with “localized” reconfigurations can be very

useful; (ii) Online Scheduling, wherein the input is not a fixed traffic

load, but a sequence of flow arrivals and the problem is to config-

ure the network and schedule the packets/flows as flows arrive

(and complete). Finally, in our context, distributing the Octopus
algorithm across switches could have the benefit of overcoming

challenges due to non-uniform latencies from the central controller

to each switch. The above directions are the focus of our future

work.
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A PROOF FOR SET OF 𝛼 ’S
Lemma 3. Let 𝛼1, 𝛼2, . . . , be the sorted set of 𝛼 ’s selected by Pro-

cedure 1. Consider a configuration (𝑀,𝛼) such that 𝛼𝑘 < 𝛼 < 𝛼𝑘+1.
We claim that there is a configuration with higher benefit per unit
cost than that of (𝑀,𝛼).

Proof. Consider the configuration (𝑀,𝛼) with 𝛼𝑘 < 𝛼 < 𝛼𝑘+1.
Consider all the links (𝑢, 𝑣) in𝑀 that have more than 𝛼𝑘 packets in

𝑇 𝑟 situated at 𝑢 and waiting to go to next hop 𝑣 . Let the set of these

links be𝑀 ′ = {(𝑢1, 𝑣1), (𝑢2, 𝑣2), . . . , }. If𝑀 ′ is empty, then benefit

of (𝑀,𝛼𝑘 ) is same as that of (𝑀,𝛼) and the lemma trivially holds.

Thus, let us assume𝑀 ′ to be non-empty.

For each (𝑢𝑖 , 𝑣𝑖 ) ∈ 𝑀 ′, consider the packets in 𝑇 𝑟 situated at 𝑢𝑖
waiting to go to the next hop 𝑣𝑖 , sort them by their weights, and let

P𝑖 be the set of packets of rank 𝑟 such that 𝛼𝑘 < 𝑟 ≤ 𝛼𝑘+1. It is easy
to see that (𝑀,𝛼)’s benefit is comprised of traversing at least one

packet from each of the P𝑖 ’s. Below, we claim that benefit per unit

cost of (𝑀,𝛼) can be improved by traversing an additional packet

from each of the P𝑖 ’s, and the lemma follows.

To prove the above claim, observe the following: (i) P1,P2, . . .
are disjoint, (ii) |P𝑖 | = (𝛼𝑘+1 − 𝛼𝑘 + 1), for all 𝑖 , (iii) Since 𝛼 < 𝛼𝑘 ,

there is at least one packet in each P𝑖 that is not traversing a

hop in (𝑀,𝛼), (iv) each P𝑖 consists of packets of uniform weight

(say, 𝑤𝑖 ). The second and fourth observations are true because

𝛼𝑘 and 𝛼𝑘+1 are consecutive in the sorted list of 𝛼 ’s selected by

Procedure 1. Now, the above claim easily follows by showing that

if (𝐵 − 𝑤)/(𝛼 − 1 + Δ) < 𝐵/(𝛼 + Δ) then (𝐵 + 𝑤)/(𝛼 + 1 + Δ) >
𝐵/(𝛼 + Δ), for arbitrary values of 𝐵, 𝛼,𝑤 and Δ (in any case, here

𝑤 =
∑
𝑘 𝑤𝑘 ). □

B PROOF OF LEMMA 2
Proof: Let𝑁 𝑗 and𝑊𝑗 be the number and aggregate weight of packets

that would traverse a hop during the configuration 𝑂 𝑗 , if 𝑂 𝑗 were

picked right after S. Then, B(𝑂 𝑗 , S) =𝑊𝑗 for each 𝑗 . Now, let 𝑁
′
𝑗

and𝑊 ′
𝑗
be the number and aggregate weight of “new” packets that

would traverse a hop during the configuration𝑂 𝑗 , if𝑂 𝑗 were picked

after the sequence ⟨S,𝑂1,𝑂2, . . . ,𝑂 𝑗−1⟩; here, by new packets, we

mean the packets that have not traversed a hop in𝑂1,𝑂2, . . . ,𝑂 𝑗−1.
We make two observations.

(1) 𝑁 ′
𝑗
≤ 𝑁 𝑗 . This follows from the fact that any new packet

can traverses a hop in 𝑂 𝑗 when ⟨S,𝑂1,𝑂2, . . . ,𝑂 𝑗−1⟩ have
already been picked, can also traverse a hop when none of

the the 𝑂 ′
𝑖
𝑠 have been picked.

(2) 𝑊 ′
𝑗
≤𝑊𝑗 . This follows from the fact that the 𝑁 𝑗 packets are

chosen with optimal weight (as per 𝑔() computation on each

link in the matching of 𝑂 𝑗 ).

Note that above we do not make any assumptions about how

the 𝑁 ′
𝑗
packets are picked for routing in the sequence 𝑂 𝑗 after

⟨S,𝑂1,𝑂2, . . . ,𝑂 𝑗−1⟩. This remark is important in ensuring the gen-

erality of Theorem 1’s proof.
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Now, the lemma easily follows from the above two observations

sinceB(⟨𝑂1,𝑂2, . . . ,𝑂𝑘′⟩, S) ≤ D
∑

𝑗𝑊
′
𝑗
, since

∑
𝑗𝑊
′
𝑗
is the aggre-

gate weight of all the packets that traverse a hop in ⟨𝑂1,𝑂2, . . . ,𝑂𝑘′⟩
and D∑

𝑗𝑊
′
𝑗
is the maximum benefit they can confer.

C PROOF OF THEOREM 1
Let the Octopus solution be ⟨𝐺1,𝐺2, . . . ,𝐺𝑘 ⟩, and Let 𝑎𝑖 be the

benefit of configuration 𝐺𝑖 , when it was selected. Thus, the total

benefit (or objective value)
7
of the Octopus solution S is (𝑎1 +

𝑎2 . . . + 𝑎𝑘 ). Let the optimal solution of ⟨𝑂1,𝑂2, . . . ,𝑂𝑘′⟩ and its

total optimal benefit be 𝑃 . To make the configurations 𝑂𝑖 or 𝐺𝑖

uniform, we assume that even the last configurations 𝐺𝑘 and 𝑂𝑘′

are appended with a reconfiguration delay Δ, and thus the solutions

have a total cost of𝑊 + Δ. Now, let us consider the 𝑖𝑡ℎ iteration

of Octopus, when Octopus has already selected ⟨𝐺1,𝐺2, . . . ,𝐺𝑖−1⟩
configurations. We can observe the following.We use𝑊 ′ = (𝑊 +Δ)
below.

• The total objective value of the sequence of configurations𝐺1

to𝐺𝑖−1 is
∑𝑖−1

𝑗=1 𝑎 𝑗 . Now, since the total objective value of the

sequence of configurations ⟨𝐺1,𝐺2, . . . ,𝐺𝑖 , 𝑂1,𝑂2, . . . ,𝑂𝑘′⟩
must be at least 𝑃 (by monotonocity

8
of the objective func-

tion), the benefit of the optimal sequence ⟨𝑂1,𝑂2, . . . ,𝑂𝑘′⟩
at this stage is at least 𝑃 −∑𝑖−1

𝑗=1 𝑎 𝑗 , assuming

∑𝑖−1
𝑗=1 𝑎 𝑗 is at

most 𝑃 which is trivially true.

• By Lemma 2,
9
the sum of the benefits of the individual con-

figurations𝑂1 to𝑂𝑘′ , each considered at this stage, is at least
(𝑃 −∑𝑖−1

𝑗=1 𝑎 𝑗 )/D. That is,

𝑘′∑
𝑗=1

B(𝑂 𝑗 , S𝑖 ) ≥ (𝑃 −
𝑖−1∑
𝑗=1

𝑎 𝑗 )/D,

where S𝑖 defines the current stage (𝑖
𝑡ℎ

iteration) and is the

sequence ⟨𝐺1,𝐺2, . . . ,𝐺𝑖 ⟩.
• By the pigeon hole principle, there must exist a configuration

𝑂𝑙 in the optimal sequence whose benefit per unit cost is at
least (𝑃−∑𝑖−1

𝑗=1 𝑎 𝑗 )/(𝑊 ′D), since the total cost of the optimal

configurations is at most𝑊 ′.
• Thus, the next configuration 𝐺𝑖 picked by Octopus must

have a benefit per unit cost of at least

(𝑃 −
𝑖−1∑
𝑗=1

𝑎 𝑗 )/(𝑊 ′D).

Thus, we have

𝑎𝑖/𝑐𝑖 ≥
1

𝑊 ′D (𝑃 −
𝑖−1∑
𝑗=1

𝑎 𝑗 ),

where 𝑐𝑖 is the cost of 𝐺𝑖 .

7
Recall that benefit B(S, ) = 𝜓 (S) for any sequence S.

8
Note that themonotonicity property holds without assuming the fixed routing scheme,

and thus, the optimal solution here without loss of any generality.

9
The remark made in Lemma 2’s proof ensures that we do not assume any routing

scheme in the optimal solution.

Now, using the above equation, it is easy to show by induction that

(𝑃 −∑𝑖
𝑗=1 𝑎 𝑗 ) ≤ 𝑃 (1 − 1/(𝑊 ′D))𝑐1+𝑐2 ...𝑐𝑖 . Thus, for 𝑖 = 𝑘 , we get

(𝑃 −
𝑘∑
𝑗=1

𝑎 𝑗 ) ≤ 𝑃 (1 − 1/(𝑊 ′D))𝑐1+𝑐2 ...𝑐𝑘 .

Since 𝑐1 + 𝑐2 . . . 𝑐𝑘 ≤ 𝑊 ′ and (1 − 1/(𝑊 ′D))𝑊 ′D ≤ 1/𝑒 for all
𝑊 ′D, we get ∑𝑘

𝑗=1 𝑎 𝑗

𝑃
≥ (1 − 1/𝑒1/D ) .

The above analysis however ignore the “truncation” of the last

configuration 𝐺𝑘 done by the if statement in Octopus; it is easy
to see that the impact of that is a factor at most a loss of benefit of

Δ time slot, and thus introducing a factor of
𝑊

𝑊 +Δ .

D PROOF OF THEOREM 3.
We prove Theorem 3, i.e., approximability of Octopus+ for the MHSR
problem, by generalizing the proof of Theorem 3. We do this by

showing the following: (i) the objective function𝜓 continues to be

monotonic in this new setting, (ii) Lemma 2 still holds, and (iii) the

overestimation of benefit function due to backtracking adds only

a constant factor of 𝑐/D. Of the three tasks above, the second is

obvious—as it is easy to see that the argument used in the proof of

Lemma 2 continues to hold in the generalized setting of the MHSR
problem. We show (i) and (iii) below.

Monotonicity of𝜓 for Octopus+. Note that the monotonicity of

the objective function is used in Theorem 3’s proof in making the

first observation that 𝜓 (concat(S𝑖 ,𝑂)) ≥ 𝜓 (𝑂), where S𝑖 is the
greedy sequence ⟨𝐺1,𝐺2, . . . ,𝐺𝑖 ⟩ and 𝑂 is the optimal sequence.

Recall that the proof of monotonicity of𝜓 in Lemma 1 was based

on the fact that each packet has a unique route; this fact doesn’t

hold within the MHSR problem’s setting. In fact, appending S𝑖 by
𝑂 can reduce the objective value to be less than𝜓 (𝑂) only in the

scenarios where a packet 𝑥 uses different routes in S𝑖 and𝑂 . Recall
the assumption that there are only two routes possible for each

packet, one of which is a direct route. Now, let us consider the

various scenarios for a packet 𝑥 :

(1) Packet 𝑥 has reached its final destination in S𝑖 . In this case,

benefit due to 𝑥 in S𝑖 is already maximum, and is preserved

in ⟨S𝑖 ,𝑂⟩ which will just annul the routing of packet 𝑥 in 𝑂 .

(2) Packet 𝑥 is still at source in S𝑖 . In this case, the routing of 𝑥

in ⟨S𝑖 ,𝑂⟩ is done purely by 𝑂 , and thus, the benefit of 𝑥 in

𝑂 is preserved in ⟨S𝑖 ,𝑂⟩.
(3) Now, the only case that remains is: packet 𝑥 used a multi-hop

route in S𝑖 and is at an intermediate node 𝑦, while it used a

direct link in 𝑂 . In this case, ⟨S𝑖 ,𝑂⟩ is still able to preserve

the full benefit of 𝑂 by backtracking 𝑥 to a direct link in 𝑂 .

This is the reason why backtracking was incorporated in

Octopus+, to ensure a performance guarantee.

Thus,𝜓 (⟨S𝑖 ,𝑂⟩) ≥ 𝜓 (𝑂) for all S𝑖 and 𝑂 .
Overestimation of a Configuration Benefit. Recall computa-

tion of 𝑔(𝑖, 𝑗, 𝛼) values with backtracking in Octopus+. Here, for
a packet 𝑥 with source-destination (𝑠, 𝑑) that is at an intermedi-

ate node 𝑦, we may add appropriate benefit of 𝑥 to both links

(𝑦, next hop of 𝑦) as well as (𝑠, 𝑑). Now, even if both links exist in

the best selected configuration, 𝑥 would be routed only through
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the direct link (𝑠, 𝑑)—this scenario suggests overestimation of the

benefit of the configuration. It can be easy that such overestimation

occurs only for D > 2, and is of the factor of at most (4/3) which

occurs in routes of length 3. This explains the factor of 𝑐 in the

theorem.
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