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ABSTRACT
We address the problem of localizing multiple intruders (unautho-

rized transmitters) using a distributed set of sensors in the con-

text of a shared spectrum system. In contrast to single transmitter

localization, multiple transmitter localization (MTL) has not been
thoroughly studied. In shared spectrum systems, it is important

to be able to localize simultaneously present multiple intruders to

effectively protect a shared spectrum from malware-based, jam-

ming, or other multi-device unauthorized-usage attacks. The key

challenge in solving the MTL problem comes from the need to “sep-

arate” an aggregated signal received from multiple intruders into

separate signals from individual intruders. Furthermore, in a shared

spectrum paradigm, presence of an evolving set of authorized users

(e.g., primary and secondary users) adds to the challenge.

In this paper, we propose an efficient algorithm for the MTL prob-
lem based on the hypothesis-based Bayesian approach called MAP.
Direct application of the MAP approach to the MTL problem incurs

prohibitive computational and training cost. In this work, we de-

velop optimized techniques based on MAP with significantly im-

proved computational and training costs. In particular, we develop

a novel interpolation method, ILDW, which helps minimize the train-

ing cost. We generalize our techniques via online-learning to the

setting wherein there may be a set of dynamically-changing autho-

rized users present in the background. We evaluate our developed

techniques on large-scale simulations as well as on small-scale in-

door and outdoor testbeds. Our experiments demonstrate that our

technique outperforms the prior approaches by significant margins,

i.e., error up to 74% less in large-scale simulations and 30% less in

real-world testbeds.

CCS CONCEPTS
•Networks→Location based services; • Security and privacy
→ Mobile and wireless security;
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1 INTRODUCTION
The RF spectrum is a natural resource in great demand due to

the unabated increase in mobile (and hence, wireless) data con-

sumption [3]. The research community has addressed this capacity

crunch via development of shared spectrum paradigms, wherein
the spectrum is made available to unlicensed users (secondaries)

as long as they do not interfere with the transmission of licensed

incumbents (primaries). E.g., in the recent years, the FCC has made

available the CBRS band, i.e., the 3550-3700 MHz band within the

Figure 1: Overall approach to localize intruders in a shared
spectrum system.

3.5 GHz band, for shared commercial use to allow other users to uti-

lize the otherwise low-usage band which was previously reserved

for incumbent users including US Navy radar operators.

The increasing affordability of the software-defined radio (SDR)

technologies makes the shared spectrums particularly prone to

unauthorized usage or security attacks. With easy access to SDR

devices [1, 2], it is easy for selfish users to transmit data on shared

spectrum without any authorization and potentially causing harm-

ful interference to the incumbent users. Such illegal spectrum usage

could also happen as a result of infiltration of computer virus or

malware on SDR devices. As the fundamental objective behind such

shared spectrum paradigms is to maximize spectrum utilization,

the viability of such systems depends on the ability to effectively

guard the shared spectrum against unauthorized usage. The current

mechanisms however to locate such unauthorized users (intruders)

are human-intensive and time-consuming, involving FCC enforce-

ment bureau which detects violations via complaints and manual

investigation [18]. Motivated by above, we seek for an effective

technique that is able to accurately localize multiple simultaneous

intruders and even in the presence of dynamically changing set of

authorized users. In the following, we begin with describing the

multiple transmitter localization problem.

Multiple-Transmitter Localization (MTL). The transmitter lo-

calization problem has been well-studied, but most of the focus has

been on localizing a single intruder at a time. However, it is impor-

tant to localize multiple transmitters simultaneously to effectively

guard a shared spectrum system. E.g., a malware or virus-based

attachment could simultaneously cause many devices to violate

spectrum allocation rules; spectrum jamming attacks would typi-

cally involve multiple transmitters. More importantly, a technique

limited by localization of a single intruder could then be easily

circumvented by an offender by using multiple devices. The key
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challenge in solving the MTL problem comes from the fact that

the deployed sensor would receive only a sum of the signals from

multiple transmitters, and separating the signals may be impossible.

In addition, the other challenge that MTL in the context of shared

spectrum system poses is the presence of authorized users—e.g., the

incumbent users and the dynamic set of secondary users that have

been allocated spectrum by the manager. To the best our knowl-

edge, no prior localization work has considered the presence of

authorized users.

The state-of-the-art technique for the MTL problem is the re-

cent work [18], which essentially decomposes the MTL problem

to multiple single-transmitter localization problems based on the

sensors with the highest power readings in a neighborhood. How-

ever, the technique has a few shortcomings: (i) it implicitly assumes

a propagation model, and thus, may not work effectively in areas

with complex propagation characteristics, (ii) it is not effective in

the case of transmitters being located close-by, a key challenging

scenario for MTL problem, and (iii) most importantly, it can’t be

extended effectively to incorporate background authorized users, a

key requirement in the context of shared spectrum systems.

OurApproach.Transmitter localization is generally done based on

observations at deployed sensors. In particular, as in prior works [7,

18], we assume a crowdsourced sensing architecture wherein rel-

atively low-cost spectrum sensors are available for gathering sig-

nal strength in the form of received power. Our approach is a

hypothesis-driven Bayesian approach, viz. maximum a posteriori
(MAP) approach, wherein each hypothesis is a configuration (i.e.

a combination of ⟨location,power ⟩ pair) of the potential intrud-

ers, and the goal is to determine the hypothesis that best explains

the sensor observations. This determination is done based on the

distributions (gathered during a training phase) of sensor obser-

vations for each hypothesis. The MAP approach is known to have

optimal classification accuracy, but (i) incurs prohibitive compu-

tation cost—exponential in number of potential intruders—when

applied to the MTL problem, and (ii) requires significant amount of

training cost. The focus of our work is to address these challenges,

and design a viable MAP-based approach. In particular, using MAP
as a building block, we develop an optimized approach that runs

in polynomial time with minimized training cost. We extend our

technique to work in presence of authorized users by incorporating

online (real-time) training.

Motivation for MAP. Our motivation for using a MAP-based approach
is multifold: First, with sufficient training data, MAP is known to

deliver optimal classification accuracy for the MTL problem [11].

Second, the MAP approach doesn’t assume any propagation model

and thus works for arbitrary signal propagation characteristics.

Third, it allows us to also estimate the intruder’s transmit power,

which can be very useful in some applications, e.g., where the

penalty is proportional to the extent of violation. Last but not the

least, it naturally extends to being able to handle a presence of an

evolving set of authorized users.

Training Cost and Optimization. The benefits of a MAP-based ap-

proach come at a cost: the MAP framework requires prior training to

build probability distributions (PDs) of sensor observations for each

hypothesis. However, most of the training occurs offline, one-time,

and can be automated e.g. via drones or robots. In our work, we

develop strategies to minimize the training cost; in particular, we

reduce the number of PDs to be constructed via a novel interpolation
scheme suited to our unique setting, and evaluate the impact of re-

duced training on the localization accuracy. We note that the online

training to incorporate presence of authorized users is needed only

for the prevailing setting (of authorized transmitters and deployed

sensors) and hence incurs minimal cost (see §4).

Overall Contributions. The goal of our work is to develop an effi-

cient technique for accurate localization of simultaneously present

multiple intruders in a shared spectrum system. The raw data are

available at https://github.com/Wings-Lab/IPSN-2020-data. In this

context, we make the following four specific contributions.

(1) Design an efficient localization algorithm (MAP∗) for the MTL

problem, based on an optimal hypotheses-driven Bayesian

approach. The designed approach predicts both locations

and transmit powers of the intruders, and does not assume

any propagation model and thus, works for arbitrary signal

propagation characteristics.

(2) Extend the designed algorithm (MAP∗∗) to localize effectively

in the presence of background authorized users, i.e., pri-

maries with possibly unknown parameters (e.g., location

and transmit power) and an evolving set of secondary users.

(3) Develop an effective interpolation scheme (ILDW) for our
unique setting to reduce the one-time training cost of our

scheme, without impacting the localization accuracy much.

(4) Evaluate our techniques via large-scale simulations as well

as over two developed testbeds (indoor and outdoor), and

demonstrate the effectiveness of our developed techniques

and their superior performance compared to the best-known

techniques.

2 PROBLEM, RELATEDWORK, AND
METHODOLOGY

In this section, we describe our model of the shared spectrum sys-

tems, formulate the MTL problem, and discuss related work. We

also describe the building block of our approach, viz., a hypothesis-

drived Bayesian localization approach (MAP).

Shared Spectrum System. In a shared spectrum paradigm, the

spectrum is shared among licensed users (primary users, PUs) and

unlicensed users (secondary users, SUs) in such a way that the

transmission from secondaries does not interfere with that of the

primaries (or secondaries from a higher-tier, in case of a multi-tier

shared spectrum system [29]). In some shared spectrum systems,

the location and transmit power of the primary users may be un-

available, as is the case with military or navy radars in the CBRS

band [29]. Such sharing of spectrum is generally orchestrated by

a centralized entity called spectrum manager, such as a spectrum

database in TV white space [19] or a central spectrum access sys-

tem in the CBRS 3.5GHz shared band [16]. The spectrum manager

allocates spectrum to requesting secondaries (i.e., permission to

transmit up to a certain transmit power at their location) based on

their location, spectrum demand, configurations of the primaries,

other active secondaries, prevailing channel conditions, etc.

Authorized andUnauthorizedUsers. Secondary users that have
been explicitly given permission to transmit at their location are
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termed as authorized users; the primaries users are also considered

as authorized users. Note that the set of authorized users evolve

over time, as more and more SUs are allocated spectrum and as

some SUs stop using the spectrum after a while. We can assume

that each SU is allocated spectrum for a certain duration of time,

after which it stops using the spectrum. Other users that transmit

without explicit permission (for that given time) are referred to as

unauthorized users or intruders.

Problem Setting and Formal Definition. Consider a geographic
area with a shared spectrum. Without loss of generality, we assume

a single channel throughout this paper (multiple channels are han-

dled similarly). For localization of unauthorized users, we assume

available crowdsourced sensors that can observe received signal in

the channel of interest, and compute (totel) received signal strength

indicator (RSSI)
1
. These sensors, being crowdsourced, may be at dif-

ferent locations at different times. At any given instant, the shared

spectrum area has some licensed primary users and some active

secondary users; the PU configurations may not be known as can

be the case for military users. The centralized spectrum manager

is aware of the set of active SUs at any time, as each SU request is

granted for a certain period of time. In addition to the authorized

users, there may be a set of intruders present in the area with each

intruder in a certain “configuration” (see §2.2).

The MTL problem is to determine the set of intruders with their

configurations at each instant of time, based on the set of sensor

observations at that instant. See Figure 1. The basic MTL problem
assumes no other transmissions (of authorized users) in the back-

ground. The more general MTL problem, where there may be an

evolving set of authorized users in the background, is referred to as

the MTL-SS problem. We address the MTL problem in §3, and then

address the more general MTL-SS problem in §4.

2.1 Related Work
Localization of an intruder in a field using sensor observations has

been widely studied, but most of the works have focused on local-

ization of a single intruder [6, 12]. In general, to localize multiple

intruders, the main challenge comes from the need to “separate”

powers at the sensors [24], i.e., to divide the total received power

into power received from individual intruders. Blind source separa-

tion is a very challenging problem; only very limited settings allow

for known techniques [20, 28] using sophisticated receivers. In our

context of hypotheses-driven approach, the challenge of source

separation manifests in terms of a large number of hypotheses, a

challenge addressed in §3. We note that (indoor) localization of a

device [4] based on signals received from multiple reference points

(e.g, WiFi access points) is a quite different problem (see [30] for a

recent survey), as the signals from reference points remain sepa-

rate, and localization or tracking of multiple devices can be done

independently. Recent works on multi-target localization/tracking

are different in the way that targets are passive [9, 15, 17], instead

of active transmitters in this work.

In absence of blind separation methods, to the best of our knowl-

edge, only a few works have addressed multiple intruder(s) localiza-

tion, and none of these consider it in the presence of a dynamically

1
We do not use angle-of-arrival (AoA) measurements [32] as they require additional

and complex RF hardware.

changing set of authorized transmitters. In particular, (i) [18] de-

composes the multi-transmitter localization problem to multiple

single-transmitter localization problems based on the sensors with

highest of readings in a neighbohood, (ii) [22] works by cluster-

ing the sensors with readings above a certain threshold and then

localizing intruders at the centers of these clusters, (iii) [23] uses

an EM-based approach. The techniques of [18, 23] assume a propa-

gation model, while that of [22, 23] require a priori knowledge of

the number of intruders present. We have compared our approach

with [18, 22] in §5, while [23] has high computational cost and has

also been shown to be inferior in performance to [18, 22] even for a

small number of intruders. Other related works include (i) [13] that

addresses the challenge of handling time-skewed sensors observa-

tions in the MTL problem, and (ii) [5] that addresses the sensor

selection optimization problem for our proposed hypotheses-based

localization approach.

2.2 MAP: Bayesian Approach for Localization
We localize intruders based on observations from a set of sensors.

Each sensor communicates its observation to a centralized entity,

the spectrum manager, which runs an appropriate localization algo-

rithm to localize the intruders. In particular, we use a hypotheses-

driven Bayesian approach, as described below, where intruders are

localized by determining the most-likely prevailing hypothesis; this

is done based on joint probability distributions of the sensors’ obser-

vations (constructed during a priori training). Below, we formalize

the above concepts, and the basic localization approach.

Observation;ObservationVector.Throughout this paper, we use
the term observation at an individual sensor to mean the received

power over a time window of certain duration, in the frequency

channel of interest (we assume only one channel). In particular,

received power is computed from the FFT of the I/Q samples in the

time window [6]. We use the term observation vector x to denote a

vector of observations from a given set of distributed sensors, with

each vector dimension corresponding to a unique sensor.

Figure 2: Illustration of
a hypothesis formed of
three transmitters.

Hypotheses. Let H0, H1, . . . ,

Hm be the set of all hypotheses,

where each hypothesis Hj rep-

resents a “configuration” of po-

tential intruders. In this paper,

we largely assume an intruder’s

configuration to be comprised

of just its location and transmit

power, but the concept of con-

figuration is quite general and

could include any attributes (e.g.,

height, antenna direction, etc.)

that affects how its transmitted

signal is received at other locations. Moreover, for simplicity, we

assume that each intruder transmits at a fixed power (which may

be different for different intruders). Thus, in our context, a configu-

ration is simply the set of (location, transmit power) pairs of the

potential intruders. We assume a bounded number of intruders. We

use H0 to represent the hypothesis with no intruders. See Figure 2.

If there is only one intruder, then each hypothesis represents

the location and transmit power combination of the intruder, and
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determining the hypothesis is equivalent to localizing the intruder

and estimating its power. If we allowmultiple intruders at a time, the

number of possible hypotheses can be exponential in the number

of intruders; we will address this challenge in §3.

Inputs. For a given set of sensors deployed over an area, we assume

the following available inputs, obtained via a priori training, data

gathering and/or analysis:

• Prior probabilities of the hypotheses, i.e. P(Hi ), for each hy-

pothesisHi . Prior probabilities come from known knowledge

about area, intruder’s behavior, etc., and can be assumed to

be uniform in absence of better knowledge.

• Joint probability distribution (JPD) of sensors’ observations

for each hypothesis. More formally, for each hypothesis Hj ,

we assume P(x|Hj ) to be known for each observation x for

the set of deployed sensors. The JPDs can be obtained from

prior training, a combination of training and interpolation

(§3.3), or even by assuming a propagation model to remove

the training cost completely.

Maximum a Posteriori (MAP) Localization Algorithm. We use

Bayes rule to compute the likelihood probability of each hypothesis,

from a given observation vector x:

P(Hi |x) =
P(x|Hi )P(Hi )∑m
j=0 P(x|Hj )P(Hj )

(1)

We select the hypothesis that has the highest probability, for given

observations of a set of sensors. That is, the MAP Algorithm returns

the hypotheses based on the following equation:

arg

m
max

i=0
P(Hi |x) (2)

The above MAP algorithm to determine the prevailing hypothesis

is known to be optimal [11], i.e., it yields minimum probability of

(misclassification) error. The above hypothesis-based approach to

localization works for arbitrary signal propagation characteristics,

and in particular, obviates the need to assume a propagation model.

However, the above MAP algorithm does incur a one-time training
cost to construct the JPDs.

3 MAP∗: OPTIMIZING MAP FOR MTL
The MAP algorithm of §2.2 can be directly applied to localize mul-

tiple intruders with optimal localization accuracy. However, MAP
incurs prohibitive computational cost especially for a large number

of potential intruders. In particular, note that if there are L poten-

tial locations, up to T potential intruders, andW possible discrete

transmit-power levels, then the hypotheses-driven MAP algorithm
needs to consider (LW )T hypotheses—making its runtime complex-

ity exponential in number of potential intruders, and thus, making

it impractical for localizing even a moderate number of intruders

present simultaneously. In addition, MAP also incurs a high training

cost. In the following subsections, we develop an optimized algo-

rithm called MAP∗ based on MAP but with significantly improved

computational and training cost. We start with optimizing the com-

putation cost in §3.1. In the following subsection §3.2, we derive a

closed-form expression to efficiently estimate intruder’s power in

the continuous domain. Finally, we discuss optimizing the training

cost via a novel interpolation scheme ILDW.

3.1 Optimizing Computation Time
Basic Idea. Note that the MAP’s exponential time complexity is

due to the exponential number of combinations of locations and/or
powers of the potential intruders. To motivate our proposed op-

timized approach, consider a simple example of 2 intruders with

fixed power p in a large area. Assume that the “transmission radius”

r for power p is much smaller than the area; we define the transmis-
sion radius as the range till which the received signal is more than

a certain noise floor. The key observation is that if the intruders

are far away (isolated) from each other (specifically, more than 2r
distance away), then they could be localized independently. If the

intruders are closer, then there is a need to separate aggregated

signal at some of the sensors and hence we must apply the stan-

dard MAP algorithm within that “subarea”; however, since each such

subarea is small (a disk of 2r radius around each possible location),

the computation time is reduced significantly. However, since we

do not a priori know the configurations of intruders, we need to

consider appropriate possibilities.

In essence, our optimized approach is a divide-and-conquer ap-

proach, consisting of a sequence of two procedures each of which

is executed iteratively. The first procedure focuses on localizing

“isolated” intruders (if any) independently, while the second proce-

dure localizes the remaining intruders—by considering all possible

subareas as suggested above. The challenge lies in modifying the

MAP algorithm for each iteration of the above procedures—as the

hypotheses to consider across iterations of the procedures are not

disjoint. We now describe each of the procedures.

Procedure 1. Localize Isolated Intruders. Informally, in this pro-

cedure, we localize intruders that are sufficiently separated from

other intruders. In other words, we localize intruders x that are

surrounded by sensors that receive most of their received power

from x . More formally, we localize an intruder x at location l if (i)
l ’s “neighborhood” has at least 3 sensors that receive most of their

power from x , and (ii) there are no other intruders in the “vicinity”

of l . In essence, we iterate over all locations l , and localize an in-

truder at l if the above conditions are satisfied with high enough

probability, based on the readings of sensors around l . The precise
definition of neighborhood above must depend on x ’s transmis-

sion radius which depends on its transmit power; however, as x ’s
transmit power is unknown, we iterate over smaller and smaller

neighborhoods.

We now formally describe the procedure. Let Rp denote the

transmission radius for a transmit power of p. Let R denote the

maximum transmission radius, i.e.,

max

p
Rp .

In the below description, we use a fractional value f to define a

neighborhood and vicinity size. We start f equal to 1, use a disk

of radius f Rp as a neighborhood and R + f Rp as the vicinity, and

iterate over the procedure for reduced values of f .

(a) Let f = 1.

(b) For each location and power pair (l ,p), compute P(Hl,p |xl,p )
using a form of Equation 1 over appropriate JPDs. Here:

• Hl,p represents the hypothesis that an intruder is at location

l and using p transmit power. We also implicitly assume

that there is no other intruder present within a distance of
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Figure 3: Illustration of Hypothesis Hl,p in Step (b) of Pro-
cedure 1. Here, the intruder I at location l is transmitting at
power p, with no other intruder within a distance of R + f Rp
from I . The observation vector xl,p consists of residual re-
ceived powers from R1 to R4, and “noise floor” from the re-
maining sensors.

R + f Rp from l ; this ensures that the observations in xl,p are

only due to the intruder at l . See Figure 3.
• xl,p represents the observation vector for all sensors, but

the sensors that are within a radius of f Rp around l use
an observation of “residual” received powers, as defined be-

low, while the remaining sensors (outside the radius of f Rp
around l ) use an observation of the “noise floor” (in essence,

we are “zeroing” the observations of the far-away sensors).

See Figure 3.

(c) Denote (l ,p) pairs that have P(Hl,p |xl,p ) higher than a certain

threshold as peaks. If a location l is a peak and there are no

other peaks within a distance of R + f Rp , then localize an
intruder at l with transmit power p.

(d) For each sensor s , define its residual received power (RRP) as
the total received power reduced by the sum of mean powers

received from already localized intruders; the desired mean

values are available from the given JPDs.

(e) Reduce f and go back to step #2 above, unless no new intruders

were localized in (c) above. In our experiments, we used f =
1, 1/2, 1/4 and 1/8.

The above procedure is partly inspired by the recent localization

work [22]. However, instead of discarding sensors based on their

individual power and clustering the rest as in [22], we “discard” sen-

sors based on their neighborhood readings (i.e., likelihood P(x|Hi )

values) and then “cluster” the remaining sensors. Also, we “cluster”

iteratively, for smaller and smaller neighborhoods.

Procedure 2. Localize Intruders Situated Close-By. Once we
have localized separated intruders as above, we now localize re-

maining intruders, if any, by applying the general MAP algorithm
independently over “subareas” that still have some sensors with

high-enough RRP (residual received power), but no intruder local-

ized in the “vicinity.” Formally, the procedure is as follows. LetT be

the maximum number of intruders allowed within a disk of radius

R, the maximum transmission radius.

(a) Let s be the sensor with highest RRP; if s’s RRP is below a

certain threshold (tantamount to noise), then quit.

(b) For t = 2 toT : Use MAP (from §2.2) to try to localize t transmitters

within a disk of radiusR around s , using observations of sensors

within a radius of 2R from s . We use a certain threshold for a

posterior probability, in a similar way as for Procedure 1.

(c) Update RRP of each sensor, and go to step (a) above.

Time Complexity. The worst-case time complexity of the first

procedure is O(LWGR log(GR )), where L andW are the number

of potential locations (total grid cells) and transmit power levels

respectively, and GR is the maximum number of grid cells within a

transmission range of an intruder. Here, the first term O(LWGR ) is

the time to compute the likelihood values in each iteration, since the

number of sensors involved in each computation is at mostGR . Note

that the number of iterations is bounded by log(GR ), as f is reduced

by a constant multiplicative factor. The worst-case time complexity

of the second procedure is O(GR (GR )
T ) where T is the maximum

number of intruders allowed/possible in a transmission region (i.e.,

a circle of radius at most R). Thus, the overall time complexity of the

above localization algorithm is O(L.W .GR . log(GR ) + GR .(GR )
T ).

Generally, we would expect T to be a small constant, as more than

3 intruders in a R-radius region with a R transmission range would

interfere with each other. If we also considerGR as a small constant,

the overall time complexity can be considered to be O(L.W ). In the

following subsection, we further reduce the time complexity by

removing the factor ofW .

3.2 Intruder Power Estimation in the
Continuous Domain

In this subsection, we derive a closed-form expression to estimate

an intruder’s power in the continuous domain, for the special case

of single intruder and Gaussian probability distributions [14]. The

derived result essentially removes the assumption of discrete power

levels, and reduces the number of hypotheses to consider by a factor

ofW . We use this result within Procedure 1 of previous subsection

to further optimize its time complexity and performance.

Estimating Intruder Power, Given a Location. Consider the
special case of a single intruder in an area. In this case, each hy-

pothesis can be represented as Hl,p , for each location l and power

p of the potential intruder. Let us focus on a particular location l∗

and the corresponding hypotheses Hl ∗,p . For a given observation

vector x, we wish to estimate the power P that corresponds to the

hypothesis with maximum likelihood among the hypothesesHl ∗,p .

P = argmaxpP(Hl ∗,p |x)

The value P can be computed by computing P(Hl ∗,p |x) for each p,
but our goal is to derive a closed-form expression for P from the

given JPDs; such an expression yield power estimate in continuous

domain without computing P(Hl ∗,p |x) for each possible discrete p.
For each sensor (location) j , let P(xj |Hl ∗,p∗ ) represent the prob-

ability distribution (PD) of j’s observations xj when the intruder is

at l∗ transmitting with power p∗, the power used at training. For a

fixed l∗ and p∗, the set of PDs P(xj |Hl ∗,p∗ ) are equivalent to the

JPDs defined in §2 under the assumption of conditional indepen-

dence
2
. Let us assume that the above PDs are Gaussian distribu-

tions [14], and thus, can be represented asP(xj |Hl ∗,p∗ ) = N (µ j ,σ
2

j )

for a given l∗ and p∗. In the above setting, the power value P that

2
PD P(xj |Hl∗,p ) can be computed P(xj |Hl∗,p∗ ) for anyp , as the path-loss can be as-
sumed to be independent of the transmit power, and JPD P(x |Hl∗,p ) can be computed

as product of PDs P(xj |Hl∗,p ) due to the conditional independence assumption.
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maximizes P(Hl ∗,p |x) can actually be derived as a closed-form ex-

pression; we state the result formally in the below lemma.

Lemma 1. Consider the special case of a single intruder in an
area. For a specific location l∗ and power p∗ (the only power used
during training), let P(xj |Hl ∗,p∗ ) represent the PDs of the sensor
obversations at location j . Now, given the above PDs for various j and
an observation vector x, the power value P = argmaxpP(Hl ∗,p |x) is
given by:

p∗ +

∑S
j=1

γ
σ 2

j
(x j − µ j )∑S

j=1
γ
σ 2

j

,

where γ =
∏S

j=1 σ
2

j and S equals to the number of sensors in the
neighborhood of l∗.

We omit the proof here, but give its intuition based on a special

case. Consider the special case wherein each σj is 1 for all j . In this

special case, the Lemma’s equation reduces to P = p∗ +

∑S
j=1(x j−µ j )

|S | ,

which implies that if each observation x j is c more than its mean

µ j then P is also c more than p∗. We note that the above result does

not extend to the case of multiple intruders. In short, the proof is

a process of solving maximum likelihood esitmaion and multiple

intruders introduce transcendental functions, thus cannot derive a

closed-form solution.

Use of Lemma 1 in MAP∗. For localization of multiple intruders,

Lemma 1 can only be used in Procedure 1 of §3.1, due to its assump-

tion of a single intruder. In particular, we can Procedure 1 of §3.1

as follows.

• We replace Rp by R, the maximum transmission radius.

• For each location l , using Lemma 1, we first compute the

power p(l) such that the hypothesisHl,p(l ) has the most like-

lihood (among the hypotheses at l) using the observations
from sensors within a radius of R.

• Then, in the rest of the procedure, we only consider the

(location, power) pairs of the type (l ,p(l)) for any l .

Rest of the Procedure 1 remains unchanged. The above change has

two benefits. First, the powers predicted in Procedure 1 are now

continuous rather than discrete. Second, the above removes the

factor ofW from the time complexity of MAP∗ and reduces it to

O(LGR log(GR ) + GR (GR )
T ) which becomes O(L) if we consider

GR and T to be relatively small constants.

3.3 ILDW: Optimizing Training Cost
As in supervised machine learning algorithms, our Bayesian ap-

proach also needs training data. We use the term training to denote

the process of collecting data and building up the JPDs for the hy-

potheses. Note that this training phase is done only one-time,
3
and

hence, a certain cost is acceptable. The training cost incurred dur-

ing such data gathering depends greatly on the exact mechanism

used for such purposes, e.g., drones with appropriate routes can be

used to gather such data [26]. In general, the cost of training would

3
JPDs depend on the channel state and hence, must be updated periodically to account

for any changes in the environment (e.g., terrain, buildings, etc.); however, such

environment changes are infrequent. Also, note that the online-training of §4 is done

repeatedly, but only for specific sensors and authorized users, and thus incurs minimal

cost. See [31] for spectrum sensing in both spatio and temporal domains.

depend on the number of JPDs that need to be constructed, with the

cost reduced with reduction in the number of JPDs needed. In this

subsection, we design effective interpolation schemes that are useful

in reducing the number of JPDs gathered which in turn will reduce

the overall training cost. Note that reduction in JPDs constructed

from raw data is bound to negatively impact the accuracy—we will

evaluate this trade-off in our evaluations and show that impact

on accuracy is minimal even with significant reduction in training

cost.

Probability Distributions. First, we note that making the follow-

ing reasonable assumptions and observations can greatly reduce

the number of JPDs/PDs to be constructed.

• If we assume conditional independence of sensor observa-

tions, then JPDs can be computed from independently con-

structed probability distributions (PDs) of received powers

at individual sensors.
• Since received power at a sensor location x due to multiple

transmitters is merely a sum of received powers [18, 27] due

to individual transmitters, we can compute PD at x for a

particular hypothesis involving a set S of intruders from PDs

due to each individual intruder in S .
• Lastly, we need to only construct a PD for one transmit

power for each transmitter and sensor location pair, since

path-loss is independent of transmit power.

Based on the above observations, if there are L discrete locations

in an area for sensors or intruders, then a MAP-based approach

requires L2 PDs. Below, we propose to minimize the number of PDs

to be constructed via data gathering/training, by estimating the

remaining unconstructed PDs via interpolation.

Figure 4: Training for
PDs at coarse-grained
locations (yellow big-
ger dots), while esti-
mating PDs using inter-
polation at the remain-
ing fine-grained loca-
tions (red smaller dots).

MinimizingTrainingCostwith
ILDW. Consider a particular loca-

tion l∗ of a potential intruder. Our
eventual goal is to compute the PD

for each of the L possible sensor

locations for this location l∗ of a
potential intruder; a PD may be

computed either by constructing

it directly from gathered sensor ob-

servations or by estimation via in-

terpolation from the constructed

PDs. In particular, for effective

interpolation, we construct PDs

at coarser-grid sensor locations,

and estimate via interpolation the

PDs at the remaining finer-grid lo-

cations. See Figure 4. The exact

coarseness at which the PDs are

constructed is determined by the accuracy of the interpolation

scheme for a given area and/or the impact on localization accuracy

due to estimated PDs. Below, we describe the interpolation scheme

that we use for our purposes.

ILDW Interpolation Scheme. Consider a fixed transmitter location

l∗, and let us assume locations R1,Rt , · · · ,Rn for which we know

the path loss from l∗. Now, consider a new point R0 for which

we wish to estimate the path-loss from l∗. This is a traditional

interpolation problem and well-known schemes such as inverse
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distance weighting (IDW), Ordinary Kriging (OK), k-NN, etc. have

been evaluated even in the special context of signal strength or

received power [7]. However, our specific context has an unique

element. We know the location l∗ of the transmitter from which

the path-loss is being estimated—as we are in the training phase

wherein we are gathering observations with transmitter at l∗. In
light of the above unique element of our setting, and the observation

of wireless signal characteristics, we use a custom interpolation

technique which is a nontrivial modification of the IDW scheme,

called inverse log-distance weighting (ILDW). The traditional IDW
interpolation scheme estimates the path loss at R0 by taking a

weighted average of the path-losses at R1,Rt , · · · ,Rn , with the

weight being the inverse of the distance from R0.
In our proposed ILDW scheme, we still estimate the path loss

at R0 as a weighted average of values at Ri ’s, but assign weights

differently. In particular, we assign the weight for the point Ri as the
inverse of the “distance” between R0 and Ri in the domain where

each point is represented merely by its logarithmic distance from

l∗, the known transmitter’s location—i.e., each point Ri is mapped

to a point logd(Ri , l
∗) on a line. This mapping is motivated by the

expectation that the actual path loss would be somewhat similar

to the log-distance path loss. Thus, the weight for the point Ri is
assigned to be

wi =
1

| logd(Ri , l∗) − logd(R0, l∗)|
,

where d() is the Euclidean distance function and the path loss at

R0 is estimated as:

u0 =
∑n
i=1wiui∑n
i=1wi

,

where ui denotes the path loss at point Ri from l∗. In the above

equation for weights, if denominator is zero, then we assignwi to be

equal to the maximum of the weights among the given points (and

if all denominators are 0, each weight is assigned to be 1). For an

illustration of the above scheme, see Figure 5. In the IDW scheme,

R1 and R2 will get equal weights, but under the ILDW scheme they

will get weights of 5.57 and 8.00 respectively. More importantly, it

can be easily shown that, for log-distance path loss, ILDW estimates

the path loss for R0 accurately from two unknown points R1 and
R2, if d(R1, l

∗) < d(R0, l
∗) < d(R2, l

∗).

The above discussion has been on using ILDW for estimating

path-loss values. In general, it can be easily used to estimate PDs

from the PDs at neighboring points—essentially, we can use ILDW
to estimate both the mean and standard deviation of a Gaussian PD

from other means and standard deviations respectively.

4 MAP∗∗: LOCALIZING IN PRESENCE OF
AUTHORIZED USERS

We have implicitly assumed till now that the only transmitters

present in the area are the intruders which need to be localized. In

this section, we adapt our MAP∗ approach described in the previous

section to the setting wherein there may be authorized transmitters

in the background and the localization technique must take their

presence into account. In particular, in a shared spectrum paradigm,

there are primary users and an evolving set of active secondary

users transmitting in the background. The key challenge comes

Figure 5: Illustration of ILDW vs. IDW. (a) Transmitter (T),
points with known (R1 and R2) and unknown (R0) received
signal strength (RSS) values. (b) Log-normal RSS function
(= -10 - 30log

10
(distance)) plotted for varying distance from

the transmitter T , along with IDW-estimated RSS value at a
point between R1 and R2. (c) Log-normal RSS function and
ILDW-estimated RSS value at a point between R1 and R2,
plotted on a logarithmic distance scale.

Figure 6: MAP∗∗’s overall approach

from the fact that the set of authorized users is not static and

changes over time as allocation requests are granted and/or active

secondary users become inactive over time.

One simple way to handle background users is to just localize

every transmitter, and then remove the authorized users. However,

any localization approach (including ours) is susceptible to per-

formance degradation with increase in number of transmitters to

be localized, especially if some of them are situated close together.

Thus, this simple approach of localizing every transmitter is un-

likely to be effective, as shown in our evaluations, especially when

the number of primaries and active secondaries can be large. Thus,

here, we develop an approach based on learning PDs in real-time

in response to changes in the set of secondary users.

MAP∗∗: Localizing with Authorized Users. Our problem is to local-

ize intruders in a shared spectrum system with fixed primaries and

changing set of secondaries. Our MAP∗∗ approach uses a combina-

tion of a priori (offline) and online training to construct JPDs for

appropriate hypotheses based on gathered observations, and then

use these JPDs to localize intruders in real-time using the MAP∗
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approach described in the previous section. We start with defining

a few useful notations.

We use R to denote the set of (fixed) primaries, and K to denote

the set of secondaries at a given instant, and Ij to denote the jth

configuration of intruders (we can assume the zero-th configuration

to represent no intruders). We use τ = R ∪ K ∪ Ij to denote the

set to all transmitters (authorized and unauthorized) at a given

instant. Finally, we use P(x|(τ = X )) to denote the joint probability

distribution (JPD) of observation vectors from the deployed sensors

when the prevailing hypothesis is that the set τ of transmitters is

X . MAP∗∗ is the sequence of following steps.

1. (Offline Step.) Construct JPDs P(x|R) and P(x|τ = (Ij ∪ R))

for all j. Since these JPDs are independent of the secondaries,
they do not change and can be done once a priori.

2. (Online Steps.) Whenever K (set of secondaries) changes:

(a) Construct JPD P(x|τ = (R ∪ K)).

(b) Compute P(x|τ = (R ∪ Ij ∪ K)) for all j, from above con-

structed JPDs, viz., P(x|R), P(x|τ = (Ij ∪ R)), and P(x|τ =
(R ∪ K)). See the below observation.

3. (Real-time Localization.) Periodically, each sensor sends its ob-

servation to a centralized entity (spectrum manager) which

uses MAP∗ to localize any intruders present. Here, localization

essentially means determining the most likely prevailing hy-

pothesis among the hypotheses τ = (R ∪Ij ∪K), based on the

JPDs P(x|τ = (R ∪ Ij ∪ K)) constructed in earlier steps.

Note that steps 1 and 2a are essentially learning the authorized

users’ signal charecteristics and view them as the "background sig-

nals". If there are no authorized users, then the background signals

are "quite". Else, then the background signals have some "sound".

We now state the observation that forms the basis of JPD computa-

tion in Steps 2b; note that the noise due to sensor’s hardware gets

duplicated when “adding” two JPDs, but can be easily removed.

Observation 1. The JPD P(x|(τ = A∪B)) and be computed from
JPDs P(x|(τ = A)) and P(x|(τ = B)). Similarly, JPD P(x|(τ = A))
can be computed from the JPDs P(x|(τ = A ∪ B)) and P(x|(τ = B)).

BlindPeriod due to Step 2.Note that the steps 2a and 2b construct
or compute the JPDs needed for localization, and thus, during their

execution, the localization cannot be done. Thus, it is important

that the duration of this “blind period” in minimal. Fortunately, step

2b being a simple mathematic computation takes only in the order

of milliseconds under efficient implementation, while 2a merely en-

tails gathering a sufficient number of observations to construct the

desired JPD which could take anywhere from milliseconds to a few

seconds, as an observation takes only a fraction of a millisecond [6].

Mobility of Users and Sensors.We note that MAP∗ works seam-

lessly for mobile intruders and sensors, due to the constructed PDs.

However, MAP∗∗ has the following limitation: the sensors must re-

main static in between two consecutive online-training periods (i.e.,

step 2 of above). If a sensor X moves, then either X ’s observation
must be ignored, or that X needs to online-train itself in its new

location (and there should be no intruders during this individual

online-training phase). Note that active SUs are expected to remain

static anyway, as they are allocated spectrum for a specific location.

5 LARGE-SCALE SIMULATION RESULTS
To evaluate our techniques in a large scale area (a few kms square),

we conducted simulations over a geographic area using path-loss

values from the Longley-Rice propagation model generated by open

sourse software SPLAT! [21]. We describe the simulation setting

below and discuss the results.

5.1 Settings
GeneratingProbabilityDistributions.To evaluate our techniques
over a large area with 100s of sensor nodes, we need to run simula-

tions with an assumed propagation model. We use the well-known

Longley-Rice [8] Irregular Terrain With Obstruction Model (IT-

WOM), which is a complex model of wireless propagation based

on many parameters including locations, terrain data, obstructions

and soil condition etc. and such. We consider an area of 4km × 4km

in the NY state and use the 800 MHz band for SPLAT! We discretize

the area using 40 vertical and 40 horizontal grid lines—yielding

1600 cells each of size 100m × 100m. To generate a probability dis-

tribution (PD) at a sensor location x due to a transmitter at location

l transmitting at power p∗, we compute the received power at x
using transmit power minus path-loss from SPLAT!, and use it

as the mean of the probability distribution. For the complete PD,

we assume Gaussian distributions and use a standard deviation

between 1 and 3, with higher values for pairs (x , l) with smaller

distance. As mentioned before, the PD due to multiple simultane-

ous transmitters can be computed as just a “sum” of the Gaussian

distributions due to individual transmitters [18, 27].

Algorithms Compared. For the MTL problem, we compare our

MAP∗ algorithm with SPLOT [18] and CLUS [22] (see §2.1). As men-

tioned before, [23] has been shown to be inferior in performance

to both SPLOT and CLUS in their respective works, and thus, not

evaluated here. CLUS uses k-means [25] for clustering, and needs

to be provided with the number of clusters. To do a somewhat

fair comparison, we provide CLUS with a range of the number of

intruders and use the elbow-point method to pick the best number

of clusters/intruders. In particular, the range of intruders passed to

CLUS is 1 to 2x , where x is the actual number of intruders present.

For SPLOT, we use the same set of parameters values as in [18]

Table 1: Simulation Evaluation Parameters.

Param. Value Description

Q
′

1
0.6 Threshold for Procedure 1’s hypothesis posterior

Q
′

2
0.1 Threshold for Procedure 2’s hypothesis posterior

R 1000 Transmission radius when power is p∗, (m)

p∗ 30 Transmit power during training, (dBm)

δp 2 Range of intruders’ power is [p∗ − δp , p
∗ + δp ]

except that we use the confined area radius to be 800m for our large

area setting ([18] only considered small 15m × 15m areas; 800m

is roughly the maximum transmission radius in our large-scale

setting and other values yielded worse results). Table 1 gives the

main parameters of MAP∗ used in our evaluations. Recall that the

transmission radius is the distance between the TX and RX for

which the RX’s RSS is at the noise floor (we use -80dBm).
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Figure 7: Localization performance of various algorithms in
a large scale area, for varying number of intruders

5.2 Five Evaluation Metrics.
We use the following metrics to evaluate the localization methods.

(1) Localization error (Lerr).

(2) Miss rate (Mr).

(3) False alarm rate (Fr).

(4) Power error (Perr).

The above metrics are best explained using a simple example. Given

a multi-intruder localization solution, we first compute the Lerr

as the minimum-cost matching in the bi-partite graph over the

ground-truth and the solution’s locations, where the cost of each

edge in the graph is the Euclidean distance. We use a simple greedy

algorithm to compute the min-cost matching. The unmatched nodes

are regarded as false alarms or misses. E.g., if there are 4 intruders

in reality, but the algorithm predits 6 intruders then it is said to

incur 0 misses and 2 false alarms and if it predicts 3 intruders then

it incurs 1 miss and 0 false alarms. The Mr and Fr metrics are on

a per-intruder basis, so in the above two examples: Mr is 0 and

1/4 and Fr is 2/4 and 0. In the plots, we stack miss rate and false

alarm rate together to show the overall difference between the true

number of intruders and predicted number of intruders. Perr is the

average difference between the predicted power and the actual

power of the matched pair in the above bi-partite graph.

Finally for interpolation schemes, we use the metric (5) inter-

polation error (Ierr) defined as the estimated path-loss minus the

ground-truth path-loss value.

5.3 Results
In this subsection, we evaluate the performance of our techniques

for varying parameter values, viz., number of intruders and sensors

in the field, and training cost. Here, the training cost is defined

relative (specifically, as a percentage of) to the full training scenario

wherein we construct each of the 1600 × 1600 PDs (one for each

pair of transmitter and sensor locations) directly from observations.

E.g., x% training cost indicates that we construct 1600 × (16x) PDs
directly, and interpolate the remaining 1600 × (1600 − 16x) PDs;
our proposed interpolation scheme only interpolates for sensor

locations. In general, when we vary a specific parameter, the other

parameters are set to their default values which are: 9% for training

cost, 5 for number of intruders, and 240 for number of sensors.

For each experiment, the said number of sensors and intruders are

deployed randomly in the field, with the intruders deployed in the

continuous location domain while the sensors deployed only at the

Figure 8: Localization performance of various algorithms in
a large scale area, for varying sensor density

centers of the grid cells. Each data point in the plots is an average

of 50 experiments.

Varying Number of Intruders. First, we compare the localization

accuracy of various algorithms for varying number of intruders.

See Figure 7. We vary the number of intruders from 1 to 10. We

observe that the localization error of MAP∗ is the minimum across

the three algorithm. The localization error is 45% – 74% less than

SPLOT. In terms of the Mr and Fr, MAP
∗
also performs others which

confirms the overall performance of MAP∗ to be the best among the

algorithms compared. In terms of absolute performance, note that

the localization error of 50-150m indicates an error of 1-2 grid cells,

and thus is minimal in the context of the large area of 4km by 4km

with 1600 cells and a sensor population of 240. Investigating further,

we observe that misses in MAP∗ are mostly due to the interpolated

PDs (note that only 9% of the PDs are constructed from the actual

sensor observations, and the remaining 91% are interpolated), while

SPLOT’s misses are mainly from the case of two or more intruders

being close to each other. This demonstrates the superior ability

of MAP∗ to localize intruders that are close-by via the designed

sequence of Procedures 1 and 2.

Table 2: MAP∗ Power Error (dB)

# Intru. MAE ME

1 0.56 -0.07

3 1.02 0.89

5 1.31 0.97

7 1.52 1.16

10 1.47 1.04

Table 3: Running time (s)

# Intru. MAP∗ SPLOT CLUS

1 0.55 0.56 0.03

3 1.07 1.02 0.11

5 5.74 1.35 0.23

7 8.14 1.63 0.30

10 16.50 1.89 0.41

Intruder Power Estimation, and Computation Time. Table 2 shows

the mean absolute error (MAE) and mean error (ME) of the in-

truder’s predicted power by MAP∗. Note that CLUS and SPLOT do not
predict intruder’s power, and hence, not shown. We observe that

MAP∗ is able to predict intuder’s power quite accurately. The errors

increase with the increase in number of intruders. Also, the mean

error begins at near zero and then turns positive. Table 3 shows

the running time of various algorithms over an Intel i7-8700 3.2

GHz processor. We see that CLUS is the fastest, and the running

times of MAP∗ and SPLOT are comparable for small number of in-

truders, but for larger number of intruders, MAP∗ takes longer time

than SPLOT mainly because of more number of iterations of the

computationally-intensive Procedure 2.
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Figure 9: Estimation errors for interpolation schemes for
varying training data

Varying SensorDensity.Wenowvary the total number of sensors

in the field, and observe the impact on the performance of various

algorithms. See Figure 8, where the number of sensors is varied

from 80 to 400. We see that all algorithms perform better with

increasing number of sensors as expected, with MAP∗ performance

improving significantly (in both Lerr as well as fr +mr ) as number

of sensors is increased from 80 to 160. More importantly, except for

very low number of sensors (i.e., 80), MAP∗ handily outperforms the

other two algorithms.

Varying Training Cost. Finally, we now investigate how the train-

ing cost (i.e., number of PDs constructed from raw observations)

affects the performance of our MAP∗ algorithm. Note that the other

algorithms do not depend on the training data, hence not shown.

We first evaluate the interpolation error of our ILDW scheme for

varying training cost (number of known PDs) by comparing with

the traditional IDW scheme on which it is based. See Figure 9,

which plots the mean absolute error (MAE) as well as mean error

(ME). As the interpolation error is substantially higher for points

that are closer to the transmitter, we plot MAE and ME as averaged

over all interpolated points as well as over just the points close (less

than 800m away) to the transmitter. Note that the PDs at sensor

locations closer to the transmitter would have a stronger bearing

on the localization accuracy, and thus, the MAE and ME values

for points closer to the transmitter are of more significance. We

observe here that as expected both MAE and (absolute value of)

ME decrease with increase in the training cost for both IDW and

ILDW, but MAE and ME of ILDW is significantly lower than that of

IDW especially for low percentages of training cost and when the

points are close to the transmitter.

We now plot the performance of MAP∗ for varying training data;

see Figure 10. As expected, the performance metrics show general

improvement with increase in amount of training. More impor-

tantly, we note that with 5-10% of training, MAP∗ achieves perfor-
mance comparable to that with 100% training, suggesting that our

interpolation scheme is largely effective as long as 5-10% of PDs

are constructed from raw observations.

In Presence of Authorized Users (MAP∗∗).We now evaluate the

performance of our MAP∗∗ approach which is tailored to work in the

presence of authorized users. To evaluate MAP∗∗, we place 5 autho-
rized users in the area—with 2 primary and 3 secondary users. The

primary users are placed at fixed locations, while the secondaries

Figure 10: Localization performance of MAP∗ in a large scale
area, for varying training data

are put at random locations. We assign each authorized user a ran-

dom power in the range of 30 to 32dBm, while, as before, a random

power between 28 and 32dBm to the intruders. To ensure that these

5 authorized users do not “interfere” with each other, we ensure

that the distance between any two of these authorized users is at

least 1000m. We compare MAP∗∗ with the simpler approach called

MAP∗+ that uses MAP∗ to localize all transmitters (authorized as well

as intruders) and then removes the predicted transmitters that are

closest to the authorized users. See Figure 11, which shows that

MAP∗∗ easily outperforms MAP∗+ for varying number of intruders.

Figure 11: Localization performance of MAP∗+ and MAP∗∗ in
large-scale simulations with authorized users present, for
varying number of intruders

6 TESTBED IMPLEMENTATION
In this section, we implement our techniques over commodity de-

vices and evaluate them over two small-scale testbeds—one indoor

and one outdoor. Outdoor environment is a realistic setting for

our target application of shared spectrum systems, while the in-

door environment provides more challenging signal attenuation

characteristics due to walls and other obstacles.

Sensor and Transmitters Used. Our low-cost (sub $100, see [10]
for a measurement study of low-cost spectrum sensors) sensing

device is composed of a single-board computer Odroid-C2 with an

RTL-SDR dongle which connects to a dipole antenna. We deploy

18 of these sensing devices in our indoor and outdoor testbeds, and

configure them for low gain. For transmitters/intruders, we use

USRP B210 and HackRF devices powered by laptops; we place these

on a cart for mobility. These transmiter devices are uncalibrated,

and there is no way to assign a specific transmit power. However,
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(a) Indoor lab environment (b) Floor plan

Figure 12: Indoor testbed. (a) Our lab used for the indoor
testbed, (b) The lab’s floor plan.

(a) Outdoor parking lot environment (b) Satellite

Figure 13: Outdoor testbed. (a) Parking lot picture, (b) Satel-
lite image of the parking lot; the red box is the area of the ex-
periment, and the stars are the locations of sensing devices
during evaluation.

they have a configurable parameter called gain which is almost

perfectly correlated to power when the gain is in a specific range,

i.e., when the transmitter’s gain is increased by 1, the receiver’s

signal strength increases by 1dB. We thus use the gain parameter to

adjust transmit power in the USRP devices. For indoor experiments,

the location is manually derived, while for outdoor experiments,

we use GPS dongles connected to the laptops. For collecting sensor

observations, we implemented a Python repository in Linux that

measures spectrum in real time at 915MHz ISM band and 2.4Msps

sample rate. The repository collects I/Q samples fetched from the

RTL-SDR dongle and computes the RSS value, then record the RSS

along with timestamp and location. These three pieces of informa-

tion are sent to a server that runs the localization algorithms.

Testbeds. The indoor testbed is built in a lab of our Computer

Science building. Figure 12 depicts the labwith its floor plan. The red

box in the floor plan is the area where experiments are conducted.

The area is 9.6 × 7.2m2
(or 2177 square feet) large, with four rows

of desks. The middle two rows are separated by a wooden board.

The area is imagined to be divided into 48 grid cells each of size

1.2m × 1.2m, with the help of ceiling tiles each of which is 0.6m ×

0.6m. The outdoor testbed is over an open space parking lot. See

Figure 13. The area is 32m × 32m. We divide the area into 100 grid

cells with each cell representing an area of 3.2m × 3.2m. The GPS

device returns location in (latitude, longitude) and the program

converts it into coordinates. We use an outdoor WiFi router and

long power cords for network and electrical connection respectively.

During the evaluation, the 18 sensing devices are placed on the

ground and are randomly spread out.

Training. In both the testbeds, for training (i.e., constructing non-

interpolated PDs), we first pick 18 random grid cells and place

sensors in their approximate centers. Then, we manually move

the transmitter around in a cart through each of the grid cells.

Figure 14: Localization performance of varies algorithms in
an indoor testbed

Figure 15: Localization performance of varies algorithms in
an outdoor testbed
For the USRP transmitter, we use a gain value of 45 in the indoor

environment and 58 in the outdoor testbed. We use a higher gain

for outdoors to allow the transmitter to have a larger transmission

range in a larger area. With each grid cell, the transmitter transmits

from 3 to 4 different points within each grid cell, and for each such

location of the transmitter, the sensors (at the 18 picked locations)

gather tens of signal strength readings. From these readings, we

construct a Gaussian probability distribution from each grid cell

location of the transmitter. More specifically, for a particular grid

cell location of the transmitter, we average over the readings from

multiple TX positions within that particular grid cell—this process

of averaging different positions of the TX inside a grid cell makes

the Gaussian distributions more robust to multipath fading and

shadowing. The overall training process takes an hour for indoors,

and about two and a half hours for outdoors.

Evaluation. For evaluation, in both testbeds, we place the 18 sen-

sors at centers of grid cells that are randomly chosen and are differ-

ent from the cells chosen for training above. The chosen locations

for the outdoor tested are shown in Fig. 13(b). We choose the in-

truder’s gain/power to be in the range of [p∗−1,p∗+1], where p∗ is
the gain/power used during the training phase as mentioned above.

Roughly half of our experiments involve close-by (in the same or

adjacent grid cells) intruders. Localization is done on a laptop which

listens to HTTP requests containing the sensors’ observations.

6.1 Results
Localization Metrics. Figure 14-15 show the localization results

for the indoor and outdoor testbeds respectively. Overall, the results

indicate that MAP∗ performs the best across all metrics, with the
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overall performance gap between MAP∗ and SPLOT increasing with

the increase in number of intruders. When the number of intruders

is 3, the performance of SPLOT is significantly worse than MAP∗ due
to a significantly higher (84% for indoors and 53% for outdoors) sum

of miss and false-alarm rates and 43% higher localization error. The

CLUS algorithm generally performs the worst, but its performance

doesn’t have a strong correlation with the increase in the number of

intruders; recall that CLUS is given the range of number of intruders

as an extra piece of information compared to the other algorithms.

In terms of absolute performance, we see that the localization error

of MAP∗ is roughly around 1 or less grid cell, and the sum of miss-

rate and false-alarm is between 5-15%.

Table 4: InterpolationMeanAbsolute Error (MAE) andMean
Error (ME) in dB for IDW and ILDW

IDW ILDW IDW ILDW
Environment (MAE) (MAE) (ME) (ME)

Indoor 2.6 1.7 1.7 0.25

Outdoor 6.2 2.7 5.8 0.48

Interpolation Error. Table 4 show the interpolation mean abso-

lute error (MEA) as well as mean error (ME) of IDW and ILDW when
the transmitter and receiver are close by (i.e., within a distance of

3 grid cells). When the transmitter and receiver are far away, the

difference of IDW and ILDW is small and thus not shown. We see that

when compared with IDW, our ILDW interpolation scheme decreased

the mean absolute error by 35 percent in the indoor environment

and 56 percent in the outdoor environment. In terms of mean error,

ILDW reduced the error compared to IDW by as large as 86 percent

and 92 percent respectively. This is because IDW mostly tends to

estimate the value to be larger than the ground truth, while ILDW’s
estimates are more even across the ground truth.

Table 5: Power Prediction Mean Absolute Error (MAE) and
Mean Error (ME) in dB for indoor and outdoor testbed

Indoor Outdoor Indoor Outdoor

# Intruder (MAE) (MAE) (ME) (ME)

1 0.34 0.50 -0.02 0.02

2 0.57 0.63 0.10 0.54

3 0.77 0.90 0.49 0.76

Intruder Power. Table 5 show the errors in the predicted powers

of the intruders in MAP∗. We see that the outdoors have a slightly

higher power prediction error, likely because of a larger number

of grid cells. We also note that with the increase in the number of

intruders, the error in predicted power increases.

7 CONCLUSIONS
In this paper, we have developed an efficient Bayesian approach

with a noval interpolation scheme to localize multiple transmitters

in presence of authorized users, and demonstrate its superior power

over large-scale simulations and smaller scale indoor and outdoor

testbeds. In our future work, we wish to extend our techniques to

allow a continuous location domain and design methods to further

minimize training cost. In addition, we will consider alternate signal

measurements such as angle-of-arrival (AoA).
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