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Abstract—A quantum sensor (QS) is able to measure various
physical phenomena with extreme sensitivity. QSs have been used
in several applications such as atomic interferometers, but few
applications of a quantum sensor network (QSN) have been
proposed or developed. We look at a natural application of
QSN—localization of an event (in particular, of a wireless signal
transmitter). In this paper, we develop effective quantum-based
techniques for the localization of a transmitter using a QSN.
Our approaches pose the localization problem as a well-studied
quantum state discrimination (QSD) problem and address the
challenges in its application to the localization problem. In
particular, a quantum state discrimination solution can suffer
from a high probability of error, especially when the number of
states (i.e., the number of potential transmitter locations in our
case) can be high. We address this challenge by developing a
two-level localization approach, which localizes the transmitter
at a coarser granularity in the first level, and then, in a
finer granularity in the second level. We address the additional
challenge of the impracticality of general measurements by
developing new schemes that replace the QSD’s measurement
operator with a trained parameterized hybrid quantum-classical
circuit. Our evaluation results using a custom-built simulator
show that our best scheme is able to achieve meter-level (1-5m)
localization accuracy; in the case of discrete locations, it achieves
near-perfect (99-100%) classification accuracy.

Index Terms—Quantum Sensor Network, Transmitter Local-
ization, Quantum State Discrimination, Hybrid Quantum Algo-
rithms

I. Introduction

Quantum sensors, being strongly sensitive to external dis-
turbances, are able to measure various physical phenomena
with extreme sensitivity. These quantum sensors interact with
the environment and have the environment phenomenon or
parameters encoded in their state [1]. A group of distributed
quantum sensors, if prepared in an appropriate entangled state,
can further enhance the estimation of a single continuous
parameter, improving the standard deviation of measurement
by a factor of 1/

√
m for m sensors (Heisenberg limit) [2].

Recently, many protocols have been developed for the
estimation of a single parameter or multiple independent
parameters [2], [3] using one or multiple (possibly, entangled)
sensors. But, the use of a distributed set of quantum sensors
working collaboratively to estimate more complex physi-
cal/environmental phenomena, as in many classical sensor
network applications [4]–[6], has not been explored much. In
this paper, we explore a potential quantum sensor network
application— localization of events. In particular, we develop

effective techniques for radio frequency (RF) transmitter lo-
calization and thus demonstrate the promise of QSNs in the
accurate localization of events. Our motivation for choosing
RF transmitter localization as the event localization application
is driven by the significance of transmitter localization in
wireless/mobile applications and recent advances in quantum
sensor technologies for RF signal detection (see §II).

Transmitter Localization using QSNs. Our approach to
transmitter localization using QSNs essentially involves posing
the localization problem as a quantum state discrimination
(QSD) problem [7] which is to identify the specific state a
given quantum state is in (from a given set of states in which
the system can be) by performing quantum measurements
on the given quantum system. The overall architecture is
illustrated in Fig. 1. First, a probe state is generated and
distributed to the QSN. Then, once the quantum sensors have
been impacted (i.e., the overall quantum state changed) due
to the transmission from the transmitter’s signal, an appro-
priate quantum measurement is made on the quantum state
of the network. The outcome of the measurement determines
the quantum state, and thus, the location of the transmitter.
However, the above process can be erroneous, as solving the
QSD problem even optimally can incur a certain probability
of (classification/discrimination) error. This paper’s goal is to
develop an approach with a minimal localization error. In that
context, our developed schemes in this paper are based on two
ideas that extend the above basic QSD-based approach:

1) We use a two-level approach that localizes the transmit-
ter in two stages: first, at a coarse level using a set of
sensors over the entire area, and then, at a fine level
within the “block” determined by the first level.

2) In addition, we circumvent the challenge of implement-
ing a general measurement operation, by instead using
a trained parameterized hybrid quantum-classical circuit
that essentially implements the measurement operation
and predicts the transmitter location from quantum sen-
sor data.

Our evaluation results show that our best scheme (which
combines the above two ideas) is able to achieve meter-level
(1-5m) localization accuracy; in case of discrete locations, it
achieves near-perfect (99-100%) classification accuracy.

Contributions. In the above context, we make the following
contributions.
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Fig. 1: Overall architecture of using a QSN to localize a transmitter.

1) We model the transmitter localization problem as a well-
studied quantum state discrimination (QSD) problem,
which allows us to develop viable transmitter localiza-
tion schemes using quantum sensors.

2) We design two high-level schemes to localize a trans-
mitter in a given area deployed with a quantum sen-
sor network. The first scheme is based on solving an
appropriate quantum state discrimination problem using
a global measurement, while the second scheme uses
a trained hybrid quantum-classical circuit to process
the quantum sensor data. Within the above high-level
schemes, we also introduce a two-level localization
scheme to improve the performance of the basic one-
level schemes.

3) To evaluate our schemes, we model how a quantum sen-
sor’s state evolves due to RF signals from a transmitter
at a certain distance. Using this model, we evaluate our
localization schemes and demonstrate their effectiveness
in our custom-built simulator.

Paper Organization. The paper is organized as follows. In
§II, we present our quantum sensor model, formally define
the transmitter localization problem and discuss related work.
In the following two sections, we describe our two classes of
algorithm: quantum-state-discrimination (QSD) based scheme,
and parameterized-quantum-circuit (PQC) based scheme. We
discuss our evaluation results in §V, and give concluding
remarks in §VI.

II. Sensor Model, Problem, and Related Work
In this section, we start with motivating our choice of RF

transmitter localization as an application for QSN, and then
model the impact of an RF received signal on the quantum
state of a quantum sensor. We then formulate the quantum
localization problem and discuss related work.

Motivation for Transmitter Localization. Accurate detection
and localization of a wireless transmitter (typically, using a
radio-frequency (RF) wireless signal) is important in a variety
of wireless and/or mobile applications, e.g., as an intruder
detection in shared spectrum systems [8], localization of
devices/users in indoor settings (e.g., supermarkets, museums,
virtual/augmented reality applications [9]), etc. In general,
transmitter localization is a key technology for location-based
services, and an improvement in transmitter localization will
be very beneficial to a variety of applications. In particular,

in shared spectrum systems [8], there is a need to guard
the shared spectrum against unauthorized usage which entails
detecting and localizing unauthorized transmitters that may
use and/or jam the spectrum illegally. Classical techniques
for transmitter localization involve triangulation [10] or fin-
gerprinting techniques [11] (see [12] for a survey).

Advances in quantum technologies have led to the creation
of efficient quantum sensors for radio-frequency (RF) signal
detection that are much more sensitive than the classical
antenna-based RF sensors and are expected to cover the
entire RF spectrum [13]. E.g., in [14], researchers use some
distributed entangled RF-photonic quantum sensors to estimate
the amplitude and phase of a radio signal, and the estimation
variance beats the standard quantum limit by over 3 dB. Thus,
QSNs may have a great potential in accurate localization of
wireless transmitters, which is a problem of great significance
in many applications.

Quantum Sensor Model. Impact on a quantum sensor due to
a physical phenomenon is typically modeled by an appropriate
unitary operator that results in a quantum phase change [1].
Below, we model the change in quantum phase of a sensor’s
state due to an RF received signal. Since the RF received
signal (and thus the change in quantum phase) depends on the
sensor’s distance from the transmitter, we can use the phase
change that occurs during the sensing period to localize a RF
transmitter.

Sensor’s Hamiltonian. A quantum sensor’s Hamiltonian Ĥ(t)
is a sum of two1 components [1]:

Ĥ(t) = Ĥ0 + ĤV (t)

where Ĥ0 is the internal Hamiltonian of the system and
ĤV (t) is the change in the Hamiltonian due to an external
signal V (t). The internal Hamiltonian Ĥ0 remains fixed and is
equal to E0 |0⟩ ⟨0|+E1 |1⟩ ⟨1|, where E0 and E1 are energies
corresponding to the |0⟩ and |1⟩ states respectively. The signal
Hamiltonian ĤV (t) is given by:2

ĤV (t) = −1

2
γV∥(t)σ̂z

1The third component of control Hamiltonian is chosen to tune the sensor
in a controlled way [1]; we assume Ĥcontrol = 0 in our analysis [15].

2Here, we ignore the transverse component of ĤV (t) [15], since, in most
sensor applications, the energy difference ∆E = E1 − E0 is much higher
than the energy changes introduced by the signal V (t) [1].
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where σz is the Pauli-Z matrix, V∥(t) is parallel component
of the signal V (t), and γ is the coupling of the qubit to the
parallel component. In essence, the above induces a change in
the spin in the z axis direction resulting in a qubit phase shift.
Above, V∥(t) at the sensor is given by:

V∥(t) = E sin(2πft+ θ)

where E is the signal’s (electric field) maximum amplitude, f
is the signal frequency, and θ is the signal’s phase.
Evolution Unitary Operator. Assume at time t = 0, the quan-
tum state is |ϕ0⟩. Then at time t = t′, the state |ϕt′⟩ is,

|ψt′⟩ = Û(0, t′) |ψ0⟩

where the time evolution unitary operator Û(0, t′) due to the
signal is given by:

Û(0, t′) = e
i
ℏ
∫ t′
0

ĤV (t)dt

= e
i
ℏ
∫ t′
0

(− 1
2γV∥(t)σ̂z)dt

where ℏ = 6.626× 10−34J · s is the plank constant. The unit
of coupling γ is J/(V ·m−1), and the unit of V∥(t) is V ·m−1.
Phase Shift over a Sensing Time Window. Let us represent
Û(0, t′) as [16], [17]

Û(0, t′) = e−
i
2ϕσ̂z (1)

where the phase shift ϕ =
∫ t′

0
γ
ℏV∥(t)dt, accumulated during

the sensing time [0, t′] due to the signal V (t) is estimated as
follows. Note that V∥(t) is a sinusoidal function—and hence,
the phase shift in one full cycle (t′ = 1/f) is zero. To address
this, we invert the qubit whenever the sinusoidal function turns
from positive to negative using a π pulse [1]. Thus, the ac-
cumulated phase in one cycle ϕ =

∫ 1/f

0
γ
ℏV∥(t)dt =

2
πℏγE

1
f .

Since the sensing time t′ is expected to be much larger than
1/f , the phase shift accumulated during the sensing time [0, t′]
can be estimated by:

ϕ =
2

πℏ
γEt′ (2)

Thus, for a fixed sensing time duration, the phase shift in
the sensor’s quantum state accumulated due to the signal is
proportional to E, the signal’s maximum amplitude, which is
a function of the distance from the transmitter (see §V).
Impact on Multiple Quantum Sensors. Consider a set of m
quantum sensors distributed over an area, with a global m-
qubit quantum state of |ψ0⟩. Consider a transmitter at a
certain specific location in the area. Let Ûi be the impact
on the ith sensor due to the transmitter over a sensing time
window. Then, the overall impact on the global quantum state
is represented by a tensor product of m individual unitary
operators, i.e.,

⊗m
i=1 Ûi, and the evolved global state state is⊗m

i=1 Ûi |ψ0⟩.
Problem Definition. Consider a network of quantum sensors
distributed in a geographic area and a potential transmit-
ter/intruder in the area. Let the initial state of the system
of quantum sensors network be |ψ0⟩. As described above,

due to the transmission from the intruder, the quantum state
evolves to |ψt′⟩ = Û |ψ0⟩ over a period of time t′. The
transmitter localization problem is to determine the location
of the transmitter based on the evolved quantum state |ψt′⟩.
Related Work. Radio transmitter localization using a set of
sensors/receivers has been widely studied [12], [18], [19].
Localization methods can be roughly classified into two types:
geometry-based and fingerprinting-based. The geometry-based
method includes multilateration (by measuring time-of-flight
between the transmitter and multiple sensors) or triangulation
(by measuring angle-of-arrival (AoA) of the transmitter at
multiple sensors) [10]. The fingerprinting-based method [11]
has a training stage that records the signal fingerprint for
certain locations; Localization is then achieved by matching
the real-time signal to the recorded fingerprints. Here, a fin-
gerprint for a transmitter location may be a vector of received
signal strengths (RSS) [18] at the sensors. Localization of
simultaneously-active multiple transmitters is more challeng-
ing, and has been addressed in recent works [20]–[22].

Recently, there have been some works that have used quan-
tum technology to investigate intruder/transmitter localization
related problems. E.g., [23] develops a scheme to improve
the size of the fingerprints used in the above-described finger-
printing approach, by encoding classical sensor data into qubits
through quantum amplitude encoding. In addition, [24] derives
analytical equations to compute AoA of an incoming RF signal
using four entangled distributed quantum sensors, without any
evaluations. [25] proposes a quantum sensor network using
Mach-Zehnder interferometers to detect (not localize) intrud-
ers for surveillance purposes. Finally, [26], [27] investigate
the optimization of initial state in discrete-outcome quantum
sensor networks and show that an entangled initial state yields
higher measurement accuracy in some applications.

Parameter Estimation using Quantum Sensors. Prior works on
parameter estimation using quantum sensors include: estima-
tion of single [2] or multiple independent parameters [3],
estimation of a single linear function over parameters [28], and
estimation of multiple linear functions [29]. Our transmitter
localization problem can be looked upon as a novel single
parameter (TX location) estimation problem based on sensor
measurements that are functions (based on signal propagation
model and distance) of the parameter being estimated.

III. Quantum State Discrimination Based Algorithms

Quantum State Discrimination (QSD). Given a quantum
state |ϕ⟩ that is known to be equal to one of the states (known
as target states) in the set {|ϕ1⟩ , |ϕ2⟩ , . . . , |ϕn⟩}, the quantum
state discrimination (QSD) problem is to determine which
state |ϕ⟩ really is. In general, each target state |ϕi⟩ may be
associated with a prior probability qi; in this paper, we assume
uniform prior. The QSD problem is typically solved using a
series of measurements or a single measurement—as defined
below. It is known that if the target states {|ϕi⟩} are not
mutually orthogonal, then there is no quantum measurement
capable of perfectly (without error) distinguishing the states.
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Thus, a QSD solution may give an erroneous answer—i.e.,
guess the state to be in |ϕi⟩ when the state is really in |ϕj⟩ for
some i ̸= j. Thus, a QSD solution is associated with an overall
probability of error (PoE), and the optimization goal of the
QSD problem is to determine the measurement (or a sequence
of measurements) that minimizes the PoE. We note that in our
developed schemes, we don’t actually solve the QSD problems
that arise due to the impracticality of implementing the general
POVMs, as discussed later; instead, we just use the standard
POVM known as pretty good measurement (PGM).

General Measurements. A general measurement [30] is de-
fined by matrices M1,M2, . . . ,Mn such that

∑
iM

†
iMi = I

where M†
i is the conjugate transpose of Mi. If this general

measurement is carried out on a pure state, we see the
outcome “i” with probability p(i) = ⟨ϕ|M†

iMi |ϕ⟩. Thus, if
we associate the outcome “i” with the given state |ϕ⟩ being in
the target state |ϕi⟩, the probability of error (PoE) for the given
measurement {Mi} is given by

∑
i

∑
j ̸=i ⟨ϕi|M

†
jMj |ϕi⟩.

If we are only interested in the probability of outcomes (as
in our context), the above general measurement can also be
represented by the set of positive semi-definite matrices (PSD)
{Ei = M†

iMi} where
∑

iEi = I . This representation is
called positive-operator valued measure (POVM); in this paper,
we use this representation of measurement for simplicity.

Core Idea: TX Localization as QSD. Consider a geographic
area where a transmitter can be at a set of potential locations
{l1, l2, . . . , ln}. For simplicity, let us assume that the trans-
mission power is constant. Let the initial state of the quantum
system, composed of say m distributed quantum sensors, be
|ψ0⟩. When the transmitter T is at a location li, let the impact
of the T ’s transmission from location li evolve the overall state
of the quantum system to |ψi⟩ based on the model described
in the previous section. Now, consider the set of target states
{|ψ1⟩ , |ψ2⟩ , . . . , |ψn⟩} corresponding to the set of potential
locations of the transmitter. Then, localizing the transmitters,
i.e., determining the location li from where the transmission
occurred, is tantamount to solving the QSD problem with the
target states {|ψi⟩}. Thus, determining the state of the quantum
system yields the transmitter location.

Selection of Initial State and Measurement. In the above con-
text, our goal is to select an initial state |ψ0⟩ and the POVM
measurement (i.e., PSD matrices {E1, . . . , En}, one for each
potential outcome/location) such that the overall PoE is
minimized — for a given setting of transmitter location, quan-
tum sensors, and signal propagation model. The optimization
problem of selecting an optimal combination of initial state
and POVM in our context is beyond the scope of this work.
Here, we use a non-entangled uniform superposition pure
initial state |ψ0⟩ =

∑2m−1
i=0

1√
2m

|i⟩. For a given initial state
and target states, determining an optimal POVM can be shown
to be a convex optimization problem and can be solved using
an appropriate semi-definite program (SDP) [31]. However,
due to scalability challenges in solving the SDP, whose size
is exponential in the number of quantum sensors involved,
in this paper, we use a well-known measurement known as

Fig. 2: QSD-One Scheme.

pretty-good-measurement (PGM) which is known to perform
well in general settings [32]. The PGM POVM is given by:

Ei = qiρ
−1/2ρiρ

−1/2 (3)

where qi is the prior probability and ρi = |ψi⟩ ⟨ψi| is the
density matrix of the ith target state ψi, and ρ =

∑
i qiρi.

Basic QSD-One Scheme; Key Challenges. The above-
described methodology is essentially our basic QSD-One
localization scheme, see Fig. 2. That is, the QSD-One scheme
localizes the transmitter by first determining the set of target
states {|ψ1⟩ , |ψ2⟩ , . . . , |ψn⟩} corresponding to the centers of
the cells (a set of transmitter locations), and then, localizes the
transmitter in real-time by performing QSD over the evolved
quantum state using PGM measurement. Note that we use
only the cells’ centers to generate the target states, and also
that the predicted location of the transmitter is always a
cell’s center in the QSD-based schemes, since the QSD-based
schemes are fundamentally classification of the transmitter
location into cells. However, during evaluation, the actual
location of the transmitter can be anywhere in the area—
presumably, non-center locations of the transmitter may incur
higher localization errors.

The key challenges in the QSD-One scheme are twofold:
(i) It is likely to incur a high probability of error due to a
large number of target states (equal to the number of potential
transmitter locations). (ii) A global POVM measurement over
a large number of sensors can be difficult to implement
in practice [33]; even ignoring the communication cost of
teleporting the qubits to a central location, the main challenge
arises due to the complexity of the circuit or hardware required
to implement a POVM over a large number of qubit states. We
address these challenges by designing a two-level localization
scheme as described below; in the following section, we
further address the above challenges by designing non-QSD
based schemes.
QSD-Two Scheme. QSD-Two solves the above-mentioned
challenges by localizing the transmitter by using two levels
of POVMs, with each POVM requiring a measurement over a
much fewer number of sensors and with a much fewer number
of possible target states. We discretize the given area into a
grid; each unit of the grid is called a cell. A block is a group
of neighboring cells that form a rectangle. In Fig. 3 (a), a grid
has 4× 4 cells and 2× 2 blocks. The thick dotted lines depict
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Fig. 3: QSD-Two Scheme. (a) Coarse-level localization phase, and (b) Fine-level localization phase.

the blocks while the non-thick dotted lines depict the cells. In
general, for a N ×N grid with N2 cells, we construct blocks
by dividing the entire grid into

√
N ×

√
N blocks — yielding

N blocks in the whole area, with each block comprised of√
N ×

√
N = N cells. Without loss of generality, we assume√

N to be an integer in our discussion. The basic idea of the
QSD-Two scheme is to localize the transmitter in two stages:
first, localize the transmitter at a block level (Fig. 3 (a)); and
then, within that block, localize the transmitter at the cell level
(Fig. 3 (b)). The sensors, target states, and POVMs used for
localization at these two stages are different. Such a two-stage
localization scheme naturally addresses the above-mentioned
challenges by reducing both the number of sensors as well as
target states required at each stage. We describe the scheme
in more detail below.
Coarse-Level Localization. The coarse level concerns local-
izing the transmitter at the block level, and is done based
on coarse-level sensors deployed over the entire given area.
The target states for the coarse-level QSD/localization are the
states corresponding to the location at the center of each block
in the given area. As mentioned above, since the number of
blocks is N , the number of target states for the Coarse-Level
localization is N . The POVM measurement for the coarse-
level localization is constructed using Eqn. 3 for the PGM
measurement over the target states derived from the impact
of the transmitter at coarse-level discrete locations (i.e., the
center of the blocks) on the coarse-level sensors. Note that
in reality, the transmitter is likely not at the center of the
blocks—but, we stipulate that a block’s center is a reasonable
representative of the actual locations of the transmitter in that
block. More formally, let {L1, L2, . . . , LN} denote the centers
of the blocks in the area, and S be the coarse-level sensors. Let
Ûi denote the impact on S when the transmitter is at location
Li. Then, the target states for the coarse-level localization are
{Ûi |ψ0⟩} where |ψ0⟩ is the initial state of S. These target
states are used to determine the POVM measurements as per
Eqn. 3, and thus, determine the block.
Fine-Level Localization. Once the transmitter has been lo-
calized within a block B via coarse-level localization, the
transmitter is then localized at a cell level within B. For
fine-level localization, each block B has a set of fine-level
sensors S(B) deployed within B (which need not be disjoint
from the coarse-level sensors). The target states for fine-level

localization within B correspond to the potential locations of
the transmitter within B which are the centers of the cells
within B, see Fig. 3 (b), and is derived from the impact of
the transmitter’s signal at the fine-level sensors S(B). Note
that at the fine-level localization phase, only the sensors S(B)
where B is the block selected in the previous coarse-level
localization are involved. Note that S(B1) and S(B2) from
two different blocks need not be disjoint. More formally, let
{l1, l2, . . . , lN} denote the centers of the cells in the block
B selected by the coarse-level localization phase, and S(B)
be the fine-level sensors. Let Ûi denote the impact on S(B)
when the transmitter is at location li. Then, the target states
for the fine level localization are {Ûi |ψ0⟩} where |ψ0⟩ is the
initial state of S(B). These target states are used to determine
the POVM measurement as per Eqn. 3, and thus, determine
the cell within the block B, which is the TX location. As
mentioned before in the one-level scheme, we note that, during
evaluation, the location of the transmitter can be anywhere in
the area, even though we have only use the cells’ centers to
generate the target states.

Multi-shot Discrimination. The quantum measurement is in-
trinsically probabilistic and the single-shot discrimination can
incur a high probability of error. One way to reduce this
probability of error is to repeat the discrimination process
many times and pick the most frequent measurement outcome.
Such repeated measurements are commonly done in quantum
sensing [1] and computing [34]. In our context, the repetitions
are done while the transmitter remains fixed.

IV. Parameterized Quantum Circuit Based Localization

Motivation. The QSD-based method discussed in the previous
section has a solid mathematical foundation, but its practical
implementation is non-trivial and even infeasible for a large
sensor network and/or a large number of potential transmitter
locations. In particular, the POVM measurement operator
(derived from the QSD problem or corresponding to the pretty-
good measurement) can be infeasible to implement for a
large number of outcomes/locations. The issue is somewhat
mitigated by using a two-level approach as described above,
but the PoE (probability of error) in the first (coarser) level
can still be high due to imperfect training (as we assign
a single outcome to a set of target locations). A potential
approach to address the above challenge is to “translate” a
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Fig. 4: (a) Our parameterized quantum circuit (PQC) block, for the general case of m qubits. It contains m number of U3

gates and m number of CU3 gates. (b) The hybrid quantum-classical circuit to localize a transmitter. It consists of multiple
PQC blocks, followed by classical processing of measurements, and finally, a neural network-based location predictor. We use
only four blocks of PQCs in our hybrid circuit.

given POVM into an appropriate quantum circuit comprised
of quantum gates and simple measurements (e.g., projective
and/or computational basis) [33]. E.g., [35] presents a tech-
nique to convert POVM operators to such quantum circuits.
However, the computational time incurred in translating a
POVM operator into a quantum circuit is exponential to the
number of qubits and is thus infeasible. In addition, the
translated quantum circuits are also sub-optimal in terms of the
number of CNOT gates used [35]. Also, note that the POVM
computed in our QSD-based method is sub-optimal to begin
with.

In this section, we develop a machine learning (ML)
technique to actually learn a quantum circuit that represents
the processing and measurement protocol needed to localize
the transmitter from the evolved quantum state. The learned
quantum circuit model maps the global evolved quantum state
to the transmitter location. In essence, we avoid computing
the POVM (from QSD, or using the pretty-good measurement)
altogether (and thus, also avoid the challenge of translating it
to a quantum circuit), and instead learn the required quantum
circuit representing the measurement protocol. To facilitate
learning the quantum circuit, we use an appropriate param-
eterized quantum circuit (PQC) and learn its parameters—
as in [36] wherein a POVM is trained using parameterized
quantum circuits. Our PQC-based localization method based
on the above insights is described below. We start with a brief
introduction to PQCs.

Parameterized Quantum Circuits (PQC). Parameterized
quantum circuits have emerged as a powerful tool in quantum
computing [37], providing an adaptable framework for tackling
diverse computational tasks. Parameterized quantum circuits
(PQCs) can be regarded as machine learning models with
remarkable expressive power; just like classical ML mod-
els, PQC circuits/models are trained to perform data-driven
tasks. PQCs offer several advantages over fixed quantum
circuits [37]–[39], including:

1) Adaptability. The parameters in PQCs can be adjusted to
tailor the circuit for a specific problem, allowing a single
circuit structure to be repurposed for various tasks.

2) Trainability. PQCs can be trained using classical opti-

mization algorithms to solve optimization problems and
machine learning tasks, making them a vital component
of hybrid quantum-classical algorithms.

3) Noise Resilience. PQCs can be more robust against noise
and errors in near-term quantum devices, as they allow
shorter-depth circuits that reduce the impact of errors.

In essence, PQCs are quantum circuits comprised of param-
eterized gates and measurements. Commonly used parameter-
ized gates in PQCs include rotation gates Rx(θ), Ry(θ), Rz(θ)
which represents rotating about the X,Y, Z axis respectively
with angle θ. A more versatile gate is the U3(θ, ϕ, λ), which
can be used to generate any single-qubit operation by setting
the appropriate values for the parameters; U3 gate can be
decomposed into simpler Rx, Ry, Rz gates. The parameterized
CU3(θ, ϕ, λ) gate is the controlled version of the U3 gate;
it applies the U3 gate only when the control qubit is in the
|1⟩ state. We use a combination of U3 and CU3 gates in our
parameterized quantum circuits.
PQC-based Localization Method. At a high level, in our
PQC-based localization scheme, the QSN data is fed into a
trained hybrid quantum-classical model, which represents the
overall measurement strategy and thus outputs the transmitter
location. Our hybrid quantum-classical model (see Fig. 4(b))
consists of the following three components. (i) Parameterized
Quantum Circuit (PQC), (ii) Processing the measurement out-
comes, (iii) Neural network location predictor, to convert the
processed measurement outcomes to the transmitter location.
We describe each of the above components below.
1. Parameterized Quantum Circuit (PQC) Design. The pa-
rameterized quantum circuit can be designed in many ways.
We design our PQC component based on some common PQC-
design patterns [40], [41] used in prior works. For example,
in [42], a block of PQC contains one layer of ZZ gates and one
layer of Ry gates. In [43], a block of PQC contains one layer
each of Rx, Ry, Rz, CZ gates. In our scheme, the quantum
circuit is composed of blocks, and each block is a combination
of U3, CU3 gates; we use these two gates in our design as
they form a universal gate set and are widely used in PQC
circuits. Circuits consisting U3 and CU3 gates have a high
expressive power as each gate has three trainable parameters.
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In particular, given N number of input qubits, a block consists
of N number of U3 and N number of CU3 gates. See Fig. 4.
In a block, each input qubit is first operated on by the unary
U3 gate in parallel, forming a layer of U3 gates. Then, there is
a series of CU3 gates following a ring connection pattern, i.e.,
each CU3 is executed over two “consecutive” qubits (with the
first being the control qubit) except for the last CU3 gate which
is over the last and the first qubit. Thus, a single block has a
circuit depth of N + 1. The overall PQC may have a series
of above blocks—the expressive power of the model increases
monotonically with the increase in the number of blocks. In
our evaluations (§V), we used four blocks as we observe
that four blocks provide good performance while having a
modest circuit depth. After the blocks, the PQC ends with
the measurement on the standard computational basis, i.e., the
Pauli Z basis.

2. Process Measurement Outcomes. As in the QSD-based
schemes, we will use the PQC to make repeated measure-
ments. To use the repeated measurements effectively for
location prediction, we characterize the set of repeated mea-
surement results by expectation values, one for each qubit.
In particular, we compute the expectation value ⟨Z⟩ of the
Pauli Z operator (which represents the measurement in the
computational basis), and feed as input to a neural network
for final location prediction as described below. We note that,
for a quantum state |ψ⟩ = α |0⟩+ β |1⟩, the expectation value
⟨Z⟩ of the Pauli Z operator is given by ⟨ψ|Z |ψ⟩ = |α|2−|β|2.

3. Neural-Network to Predict Location. We consider two vari-
ants of our neural network predictor: (i) Classifier variant.
which outputs a class/label corresponding to the cell where
the TX is located, and thus, predicts the location to be the
cell’s center. (ii) Regression variant, that outputs locations as
the x and y coordinates.

Classifier Variant. Our overall circuit with the Classifier
component for the location prediction essentially equates to
a circuit for quantum state discrimination (QSD), as the QSD
problem also outputs a finite number of discrete outcomes.
For the Classifier Variant, we use a simple neural network
with only an input layer and an output later, having no hidden
layers—i.e., a single fully connected layer. The input neurons
are the expectation values of the Pauli Z operator from the
measurements as described above, and the output neurons
represent the cell labels. See Fig.5(a), which shows the fully
connected layer for a network of 4 quantum sensors deployed
in a 4× 4 grid with 16 cells.

Regression Variant. The Classifier Variant outputs locations
in a discrete space—which is fundamentally sub-optimal if
the transmitter can be anywhere in the 2D space. To output
the predicted location in the continuous 2D space, we use
a Regression Variant that outputs the location as an (x, y)
point. For the setting wherein the transmitter may be located
anywhere in the 2D space, the Regression Variant should have
a smaller localization error. Fig.5(b) shows the fully connected
layer for the Regression Variant; the number of output neurons
is always two, i.e., a X coordinate and a Y coordinate.

Fig. 5: Neural network (a fully connected layer) for 4 quantum
sensors to predict the location from processed measurements.
(a) Classifier Variant, (b) Regression Variant.

4. Loss Function. During training, the gradient of the loss
function is back-propagated through the neural network and
the quantum circuit parts, so that the parameters within these
parts can be appropriately updated. The loss functions used
for the Classifier Variant and the Regression Variant are
different; for the Classifier variant, we use the cross-entropy
loss function while for the Regression variant, we use the mean
square error loss function.

PQC-One and PQC-Two Schemes. The above-described
hybrid quantum-classical model is essentially our PQC-One
localization scheme. By using PQC-One as a building block
and using the same two-level (coarse, fine) idea described
in §III, we design the PQC-Two, corresponding to the two-
level QSD-based schemes described in the previous section.
At the first coarse level, the output of the “coarse-level
PQC-One” will determine the block the transmitter is in.
Then at the second fine level, the output of the “fine-level
PQC-One” tied to the block determined by the coarse level is
the final location output. The PQC-based schemes essentially
use the trained circuit in lieu of the POVM used in the QSD-
based schemes. The PQC-based schemes can be used with
either the Classifier or the Regression variant for the last
predictor component.

V. Evaluation
In this section, we evaluate our developed schemes. We

make two observations, which are as expected: (1) Perfor-
mance of two-level methods is better than one-level methods
in general, and (2) Performance of the PQC-based methods is
superior to the QSD-based methods. In summary, our schemes
are able to achieve meter-level (1-5m) localization accuracy,
and near-perfect (99-100%) classification accuracy in the case
of discrete locations.

A. Evaluation Settings

Algorithms Evaluated. We evaluate four algorithms:
QSD-One, QSD-Two, PQC-One, PQC-Two. As the name
implies, QSD-One and PQC-One are one-level methods,
while QSD-Two and PQC-Two are two-level methods. Simi-
larly, QSD-One and QSD-Two are QSD-based methods, while
PQC-One and PQC-Two are PQC-based methods. We use
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the Regression Variant in our PQC-based methods by default,
since in our default setting the transmitter can be anywhere in
the 2D space. Our code3 is written in Python and uses Numpy
and Scipy libraries to perform matrix-related operations.
QSD-based Method Implementation. To implement the
QSD-based methods, we first determine the target states
which are then used to construct the pretty-good-measurement
POVM via Eqn. 3. To localize a transmitter, we first compute
the evolved state and then, use the POVM to determine the
target state or the TX location. This is done repeatedly as
described in Section III, and in two levels (coarse, fine)
depending on the localization scheme. The target states and
evolved states are both generated using the sensor model
described in Section II, i.e., using Eqns. 1-2, with the electric
field strength (E) and phase shift range modeled as below.
Generating Sensor Readings. The crux of determining tar-
get states, computing the evolved states, and simulating the
training datasets is to compute the phase shift picked up by
the quantum sensors due to the signal during the sensing
process. In Eqn. 2, we modeled the phase shift as a function
of the electric field strength and the sensing time. Thus, we
need a model for the electric field strength. In free space,
the electric field strength produced by a transmitter with an
isotropic radiator can be approximated as [44]

E =

√
30 · P
d

× (1 + noise)

where E is the electric field strength in V · m−1, P is the
transmitter power output in W (watt), and d is the distance
from the radiator in m. Since in most quantum sensing
applications, the signal to be sensed are weak signals, here we
assume the power of the transmitter P = 0.1µW . Ideally, the
strength of the electric field is inverse to the distance between
the transmitter and the sensor. But in reality, the relationship
is more complicated. So, we add a random uniform variable
noise ∈ [−0.05, 0.05] to incorporate reality in a simple way.
The target states and thus the POVMs are computed assuming
zero noise during training, while during localization, the signal
received is assumed to contain noise. The simulated datasets
for PQC-based methods are assumed to contain noise too.
Range of Phase Shift ϕ. We set the sensing time t′ to 1 mil-
lisecond4. As mentioned later, our grid cells are 10m× 10m,
and we assume 5 meters to be the minimum distance allowed
between a transmitter and a quantum sensor. Thus, we choose
the coupling constant γ to be such that a quantum sensor at 5
meters away from the transmitter accumulates a phase shift of
2π during the sensing time t′; this entails that the maximum
phase shift is 2π and the minimum phase shift is as low as 0
(when the sensor is very far away from the transmitter).
PQC-Based Methods Implementation and Training. Dif-
ferent than the QSD-based methods, the PQC-Based meth-
ods involve quantum circuits. We use the publicly available

3https://github.com/caitaozhan/QuantumLocalization
4In principle, the sensing time period must be smaller than the decoherence

time, which varies across different quantum technologies.

TorchQuantum [38] library to implement and train the param-
eterized hybrid circuits. TorchQuantum’s classes are inherited
from a core class of PyTorch [45], which is used to implement
the neural network predictor. Thanks to PyTorch, we are able
to train the PQCs fast on a GPU. We use the Adam optimizer
and train for 80 epochs for both PQC-One and PQC-Two
methods.

The sensor readings are also used as the sensor data to
train the PQC-based hybrid circuit models. Essentially, for a
fixed initial global state of the sensors (say, ψ), each sample
consists of the quantum state received from the quantum sensor
network (input feature) and the location of the transmitter
(ground truth target). More formally, each sample is of the
kind: (

⊗m
i=1 Ûi |ψ⟩ , L), where Ûi is the evolution unitary

operator for the ith quantum sensor (as per §II and above
paragraphs), |ψ⟩ is the uniform superposition initial state, and
L is the location of the transmitter in the field in all scenarios
except for one, i.e., L is the block number for samples used
to train a “coarse-level PQC-One” in the PQC-Two Classifier
Variant. We use one hundred training examples/samples for
each cell, with the transmitter’s location randomly scattered
over the cell. For example, consider a 4 × 4 grid with a
block length of 2. The training dataset for PQC-One will
have 16 × 100 = 1600 samples. And PQC-Two will have
16× 100 = 1600 samples in the first level to train a “coarse-
level PQC-One”, and 4× 400 = 1600 samples in the second
level to train 4 blocks each requiring 4×100 = 400 to train a
“fine-level PQC-One”. Thus, there are a total of 3600 training
samples used to train 5 models in a PQC-Two method.

Quantum Sensor Deployment. We deploy sensors uniformly
over the area; for the QSD-Two and PQC-Two schemes,
we deploy the fine-level sensors along the block borders so
that the sensors can be used by the two neighbor blocks,
i.e. fine-level sensors for the blocks are not disjoint. We
use a maximum of 8 quantum sensors for any single QSD
instance—since the memory and computing requirements for
storing and implementing a POVM become prohibitive beyond
that. E.g., a POVM for 256 target-states over 12 sensors
requires 69 GB of main memory storage.5 The PQC-based
methods have a bottleneck on the number of sensors due
to POVM considerations, but we are still limited in practice
nevertheless due to training time and GPU memory; thus, we
use a maximum of 16 sensors in the first level or in any block
of the second level. This limits the training time to at most
several hours and GPU memory requirements to 8-16 GB. We
discuss more details on number of sensors used at various
levels and blocks, below. Finally, each grid cell is of size
10m×10m in all settings, and the transmitter can be anywhere
in the given area except that the minimum distance between
any sensor and transmitter is 5m.

Two-Level Schemes: Blocks and Sensors Used. As described
in §III, for a grid N ×N , if N as a perfect square, the grid is
divided into

√
N ×

√
N blocks—with the first-level localizing

5We need 256 matrices each of size 212 × 212, with each matrix element
being a complex number requiring 16 bytes.
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the transmitter into one of the blocks, and the second-level
localizing the transmitter into a cell within the block. However,
in this section, to get a better insight into the performance
trends, in this section, we have also considered N values
that are not perfect squares. For such N values, we have
determined block sizes as integers close to the

√
N ; e.g., for

a 12× 12 grid, we divided the grid into 4× 4 blocks each of
3× 3 cells. In terms of the number of sensors at each level—
we use up to 16 sensors in the first-level of localization, but
in the second-level we always use exactly 4 sensors per block
irrespective of the block/grid size.
Performance Metrics. We use the Localization error
(Lerr, in meters) as the main metric to evaluate our localization
schemes. Lerr is defined as the distance between the actual
location of the transmitter and the predicated location. In all
plots except the CDF plots, average Lerr refers to the average
localization error over many TX locations; in the CDF plots,
the distribution is over many TX locations.

B. Evaluation Results

In our evaluation, we evaluate the performance of our pro-
posed four localization algorithms’ performances for varying
grid size and number of quantum sensors. Note that, for one-
level algorithms, the number of sensors is the total number of
sensors used, while for the two-level algorithms, the number
of sensors parameter is the number of sensors used in the
first/coarse level (recall that, in the second level, we use only
4 sensors for each block).

Fig. 6: The performance of QSD-One, QSD-Two, PQC-One,
PQC-Two for varying grid size and 8 quantum sensors.

Varying Grid Size. Fig. 6 shows the performance of all
four algorithms with varying grid sizes when the number of
quantum sensors is eight. We observe that the PQC-based
methods have lower localization error than the QSD-based
methods, and the two-level schemes generally perform better
than one-schemes—except that the QSD-Two performs worse
than QSD-One for smaller grid sizes.6 The results show

6This is likely because the QSD problem at the first/coarse level has a high
error. The high error here is due to all cells being at the border edges, making
the quantum state discrimination hard. The neighboring two cells across the
border of two blocks are close, thus hard to determine which block the cell
is in.

the power of a well-trained parameterized hybrid circuit and
the effectiveness of two-level schemes. More specifically, we
observe that for a 16×16 grid, the average Lerr of PQC-Two
is 4.9m, which is almost half of the average Lerr of PQC-One
at 8.5m. Similarly, the Lerr of QSD-Two is also almost half
of the Lerr of QSD-One, i.e., 9.6m vs 18.3m.

Fig. 7: The performance of QSD-One, QSD-Two, PQC-One,
PQC-Two for varying sensor number and a 16× 16 grid.

Varying Number of Sensors. Fig. 7 shows the average Lerr in
a 16× 16 grid with a varying number of quantum sensors. As
expected, we observe that the Lerr improves with an increasing
number of quantum sensors, for all four schemes. For the
PQC-Two scheme, we observe that the Lerr improvement from
8 sensors to 16 sensors is minimal, i.e. 4.9m vs 4.7m. This
is because having 8 sensors in the first/coarse level seems
sufficient to determine the block, and then, in the second
level, each block will always have 4 sensors associated with
it (performance in the fine level is the same).

Fig. 8: The cumulative probability of Lerr of QSD-One,
QSD-Two, PQC-One, PQC-Two for a 16 × 16 grid and 8
quantum sensors.

CDF. Fig. 8 shows the cumulative distribution function of Lerr

for four methods when the grid size is 16×16 and the number
of sensors is 8. This plot gives insight into the distribution of
Lerr over different TX location, compared with Fig. 7 which
shows only average Lerr across many TX locations. Here,
the distribution is over 256 TX locations—one random TX
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location per cell for 256 cells in the 16×16 grid. We observe,
as expected, that the two-level schemes are better than the
one-level schemes, and the PQC-based methods are better
than the QSD-based methods, except that QSD-Two has a
better CDF plot than PQC-One up to the 83-th percentile. The
above exception implies that QSD-Two has higher number
of locations with large Lerr compared with PQC-One; this
is likely due to QSD-Two incurring errors in determining
the block at the first/coarse level, which can lead to large
localization errors.

Discrete Setting: In the previous evaluation results, we have
considered the practical continuous setting wherein the trans-
mitter can be anywhere in the area. To evaluate the true perfor-
mance of our QSD-based methods, which are fundamentally
classification strategies, we now evaluate the discrete setting
wherein the transmitter is located only at the center of a
cell and the predicted output of a localization method is the
cell number of the transmitter. In this discrete setting, we
evaluate the performance metric of Classification Accuracy
CCacc which is the percentage of times the method is correct
in predicting the cell number. Also, in this discrete setting,
the PQC-based methods use the Classification variant in the
location predictor component, while the QSD-based methods
remain the same.

Fig. 9 shows the performance of the four algorithms with
varying grid sizes when the number of quantum sensors is
eight. We observe similar trend for each algorithm as well
as similar relative trends among the algorithms as in the
continuous setting. We make two important observations:

1) First, in the QSD-based methods, the QSD-Two is a
significant improvement over QSD-One (from 13% to
77% for grid side 16×16), which shows the effectiveness
of our two-level approach.

2) Second, for the largest grid size of 16× 16, the CCacc

for QSD-based QSD-Two is reasonable at 77% but is
further improved impressively by PQC-Two at 97%; this
shows the effectiveness of our PQC-based methods. The
3% error here in PQC-Two is mainly due to the errors
in the first level of determining the block.

Also, we see that for lower grid sides, the QSD-Two surpris-
ingly performs worse than QSD-One; the reason for this is
similar to the continuous case that determining the blocks at
the first level becomes more erroneous when the grid size is
small.

Fig.10 shows the CCacc in a 16×16 grid for varying number
of quantum sensors. As expected, we observe that the CCacc

improves with an increasing number of quantum sensors. More
importantly, the CCacc for PQC-Two is near-perfect at 99%
with 16 sensors; this shows the effectiveness of the two-
level method as well as of the well-trained parameterized
hybrid circuits. As in the continuous-domain setting, we don’t
show the QSD-methods for 16 sensors, as it was infeasible
to implement the QSD-based methods for a large number of
sensors.

Fig. 9: Performance of QSD-One, QSD-Two, PQC-One,
PQC-Two for varying grid size and 8 sensors.

Fig. 10: Performance of QSD-One, QSD-Two, PQC-One,
PQC-Two for varying sensor number and a 16× 16 grid.

VI. Conclusion and Future Work
In this paper, we have developed effective schemes for

an important quantum sensor network application, viz., lo-
calization of a wireless transmitter. The work demonstrates
how a network of quantum sensors can collaborate to predict
a parameter (here, location of an event/transmitter) that is
received/sensed differently at different sensor locations (e.g.,
depending on the distance from the event). In particular,
this work shows the promise of quantum sensor networks in
localization of events in general—one of the most important
applications of classical sensor networks.

Our work has significant opportunities for improvement. In
particular, one can optimize the initial state of the sensors to
further improve the localization performance (note that, here,
we have only used a uniform superposition initial state). In
this context, we are also interested in determining whether
entangled initial states are helpful; recent works [46]–[48] have
shown that entangled states can be efficiently distributed over a
quantum network. In addition, one can consider general multi-
level approaches and restricted forms of measurement, design
parameterized quantum circuits with noise [38], and develop
techniques to distribute such circuits over a quantum (sensor)
network as in [49]–[51]. We plan to explore some of these
directions in our future work.
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