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Transmitter Localization in Classical and Quantum Sensor Networks

by Caitao Zhan

In shared spectrum systems, it is important to be able to localize simultaneously
present multiple intruders (unauthorized transmitters) to effectively protect a shared
spectrum from malware-based, jamming, or other multi-device unauthorized-usage at-
tacks. We address the problem of localizing multiple intruders using a distributed set
of classical radio-frequency (RF) sensors in the context of a shared spectrum system.
In contrast to single transmitter localization, multiple transmitter localization (MTL)
has not been thoroughly studied. The key challenge in solving the MTL problem comes
from the need to “separate” an aggregated signal received from multiple intruders into
separate signals from individual intruders. We solve the problem via a Baysian-based
approach and a deep-learning-based approach.

After addressing multiple transmitter localization with a network of classical sen-
sors, we explore a network of quantum sensors and continue the work of transmitter
localization using quantum sensors. A quantum sensor network is a network of spa-
tially dispersed sensors that leverage the quantum properties of light and matter, e.g.,
quantum coherence and quantum entanglement. We pose our transmitter localization
problem as a quantum state discrimination problem and use the positive operator-valued
measurement (POVM) as a tool for localization in a novel way. Quantum entanglement
is a critical resource for the task of distributed quantum sensing. So we also investi-
gate an efficient way to distribute or route the entangled pairs (EPs). Routing EPs is
challenging because of the no-cloning theorem and the long-distance direct transmis-
sion of qubit states being infeasible due to unrecoverable errors. We develop a heuristic
algorithm that efficiently routes EPs in a quantum network.

For the proposed work, we plan to continue the investigation of transmitter localiza-
tion with a quantum sensor network. POVM is the current quantum measurement we
are using, it is general but not very practical. Instead of POVM, we plan to use the pro-
jective measurement on the computational basis. To better optimize the measurement
process, parameterized quantum circuit (quantum neural networks) will be utilized to
learn an optimal/near-optimal measurement. In the end, we aim to run evaluation
experiments on a real IBM quantum computer instead of classical simulation.
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Chapter 1

Introduction

1.1 Background and Motivation

Wireless sensor network (WSN) is a network of spatially dispersed and dedicated sensors
that monitor and record the physical conditions of the environment and forward the
collected data to a central location. WSN can measure environment conditions such as
temperature, sound, pollution levels, humidity, wind and radio spectrum. WSN refers
to classical sensor networks since everything it involves is classical. A sensor network
becomes a quantum sensor network (QSN) when the sensors leverage some quantum
properties of light and matter, such as quantum coherance and quantum entanglement.
Quantum sensors are extremely sensitive to physical quantities such as magnetic field,
electric field, quadrature displacement and phase shift in the optic field.

Classical. WSNs have various applications. In this thesis, the application we focus
on is spectrum surveillance and monitoring for security and threat detection. The core
problem involved in this application is transmitter localization, and in particular, multi-
ple transmitter localization (MTL) as the number of transmitter present in an area could
be more than one and localizing multiple transmitters are not independent. The reason
for being not independent is that a sensor receives an aggregated power from multiple
transmitters and separating the power from different multiple sources is impractical.
That an aggregated received power not able to separete is a big challenge for MTL. Fur-
thermore, in a shared spectrum paradigm, presence of an evolving set of authorized
users (e.g., primary and secondary users) adds to the challenge.

The shared spectrum paradigm composes an important background for our MTL
work. The RF spectrum is a natural resource in great demand due to the unabated
increase in mobile (and hence, wireless) data consumption [5]. The research community
has addressed this capacity crunch via development of shared spectrum paradigms,
wherein the spectrum is made available to unlicensed users (secondaries) as long as
they do not interfere with the transmission of licensed incumbents (primaries). The
fundamental objective behind such shared spectrum paradigms is to maximize spectrum
utilization, the viability of such systems depends on the ability to effectively guard
the shared spectrum against unauthorized usage. The current mechanisms however to
locate such unauthorized users (intruders) are human-intensive and time-consuming,
involving FCC enforcement bureau which detects violations via complaints and manual
investigation [63].

Motivated by above, we seek for an effective technique that is able to accurately
localize multiple simultaneous intruders and even in the presence of dynamically chang-
ing set of authorized users. Our solution assumes a network of crowdsourced sensors
wherein relatively low-cost spectrum sensors are available for gathering signal strength
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in the form of received power. We introduce two different approaches to the MTL prob-
lem. The first approach is a hypothesis-driven Bayesian approach, viz. maximum a
posterior approach, where wherein each hypothesis is a configuration (i.e. a combina-
tion of (location, power) pair of the potential intruders), and the goal is to determine
the hypothesis that best explains the sensor observations. The second approach is a
deep learning-based approach. First, we encode the sensors’ observation data into an
image. Then, we frame MTL as a sequence of two steps: image-to-image translation
and object detection, each of which is solved using a trained CNN model. The first
step of image-to-image translation maps an input image representing sensor readings to
an image representing the distribution of transmitter locations, and the second object
detection step derives precise locations of transmitters from the image of transmitter
distributions. Besides the location, the transmission power is another property of a
transmitter that we wish to estimate. We introduces some novel methods to estimate
the power of multiple transmitters. We also introduce a novel interapolation method
for received signal strength.

Quantum. In the quantum side, we use QSN, instead of WSN, to continue solving
the problem of transmitter localization. Albeit classical sensors are omnipresent, there
are big motivations to explore quantum sensors. Quantum sensing is an emerging field
that leverages the quantum properties of light and matter at atomic/subatomic scales
and has the potential to sense signals at an unprecedented level of precision. Quantum
sensing brings new opportunities to new and well-established problems. For example,
physicists in the year 2016 used squeezed quantum states to improve the sensitivity of the
Laser Interferometer Gravitational-wave Observatory (LIGO) detector and successfully
detected gravitational waves. In [127], researchers use some distributed quantum RF-
photonic sensors to estimate the amplitude and phase of a radio signal. They showed
the performance of sensing a global property of the RF wave is enhanced by leveraging
a shared multipartite entangled state produced by squeezed light. In their experiments,
the estimation variance of RF amplitude and phase both beat the standard quantum
limit by over 3 dB. The precision improvement factor of 1/ VN for N sensors is known
as reaching the Heisenberg limit.

Motivated by the above, we aim to leverage quantum sensors to perform some canon-
ical tasks and thus open a new avenue of research. The canonical task we picked is RF
transmitter localization [128, 135]. We consider a network of quantum sensors dis-
tributed in a geographic area and a single transmitter active in the area to be localized.
We pose the localization problem as a quantum state discrimination problem [12]. In our
approach, the quantum sensor network reports a quantum state, and we discriminate the
quantum state via positive-operator valued measure (POVM) and the POVM’s output
indicates the transmitter location. The key challenge here is the scalability challenge,
i.e., the method’s time and space complexity grows exponentially against the number of
sensors and the method’s localization accuracy decrease against the number of discrete
locations. To solve the challenge, we propose a two-level POVM method that is com-
prised of a coarse-level POVM and a fine-level POVM. The two level idea is effective
and can be generalized into three levels and more.

Quantum entanglement is a phenomenon that has no counterpart in the classical
world. It is the physical phenomenon that occurs when a group of particles (electrons,
photons, etc) are generated, interact, or share spatial proximity in a way such that the
quantum state of each particle of the group cannot be described independently of the
state of the others, including when the particles are separated by a large distance. In
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short, quantum entanglement is a specially strong correlation between multiple parti-
cles. In our context of QSNs, entanglement can be served as a resource to enhance the
perforance of the QSN. For example, the 1/ V/N improvement factor mentioned above
requires the initial probe state as an entangled state. The entanglement pair resource
is generated at a single node, but the quantum sensors are spatially distributed. Thus,
a major problem is to distribute (or route) the entanglement to the quantum sensors
at a potentially large distance apart. This a challenging problem in the field of quan-
tum communication. Physical transmission of quantum states accross nodes can incur
irreparable communication errors, as the no-cloning theorem proscribes making inde-
pendent copies of arbitrary qubits. The establish of entanglement over long distance
is challenging due to the low probability of success of the underlying physical process
(short distance entanglement and swapping). In this thesis, we propose an efficient
heuristic approach that efficiently route an entanglement pair in a quantum network.

1.2 Thesis Statement

The thesis statement is: Transmitters can be localized efficiently and accurately
with our designed methods in classical and quantum sensor networks. Con-
sider some transmitters to be localized a geographpical area. We deploy a distributed
set of classical or quantum sensors in the area. We aim to efficently and accurately
localize the transmitters by processing the data received from the sensors intelligently.
Besides the core goal of transmitter localization, we also solve closely related prob-
lems such as transmission power estimation, receive signal strength interpolation and
quantum network routing of entanglement.

1.3 Contributions and Organization of this Thesis
Towards the goal of our thesis we make the following contributions:

e In Chapter 2, we introduce an efficient hypothesis-based Bayesian approach MAP*
for multiple transmitter localization (MTL) problem (Section 2.3.1); A closed-form
equation for the estimation of transmission power (Section 2.3.2); A novel received
signal strength interpolation method inspired from the power law distribution
(Section 2.3.3); Extend MAP* to accommodate the presence of authorized users
(Section 2.4).

e In Capter 3, we introduce a deep learning-based approach DeepMTL for the MTL
problem (Section 3.3, Section 3.4); Extend DeepMTL via deep learning models to
accommodate the presense of authorized users (Section 3.5); A deep learning-
based approach that estimates the transmission power of multiple transmitters
(Section 3.6).

e In Chapter 4, we introduce the concept of quantum sensor networks and the model
of a quantum sensor (Section 4.2); In the context of quantum sensor networks, we
pose a transmitter localization problem as a quanum state discrimination problem
and introduce a novel quantum localization method POVM-Loc and POVM-Loc Pro
based on positive-operator valued measure (Section 4.3).

e In Chapter 5, we introduce an efficient heuristic algorithm Balanced-Tree for
routing an entanglement pair. The algorithm is Dijkstra-based, and the path
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selection metric is a closed-form expression that models a path as a tree near
accurately (Section 5.4).

e In Chapter 6, we described our proposed work of this thesis.



Chapter 2

Efficient Localization of Multiple
Intruders for Shared Spectrum
System

We address the problem of localizing multiple intruders (unauthorized transmitters)
using a distributed set of sensors in the context of a shared spectrum system. In contrast
to single transmitter localization, multiple transmitter localization (MTL) has not been
thoroughly studied. In shared spectrum systems, it is important to be able to localize
simultaneously present multiple intruders to effectively protect a shared spectrum from
malware-based, jamming, or other multi-device unauthorized-usage attacks. The key
challenge in solving the MTL problem comes from the need to “separate” an aggregated
signal received from multiple intruders into separate signals from individual intruders.
Furthermore, in a shared spectrum paradigm, presence of an evolving set of authorized
users (e.g., primary and secondary users) adds to the challenge.

In this chapter, we propose an efficient algorithm for the MTL problem based on the
hypothesis-based Bayesian approach called MAP. Direct application of the MAP approach
to the MTL problem incurs prohibitive computational and training cost. In this work, we
develop optimized techniques based on MAP with significantly improved computational
and training costs. In particular, we develop a novel interpolation method, ILDW, which
helps minimize the training cost. We generalize our techniques via online-learning to
the setting wherein there may be a set of dynamically-changing authorized users present
in the background. We evaluate our developed techniques on large-scale simulations as
well as on small-scale indoor and outdoor testbeds. Our experiments demonstrate that
our technique outperforms the prior approaches by significant margins, i.e., error up to
74% less in large-scale simulations and 30% less in real-world testbeds.

2.1 Introduction

The RF spectrum is a natural resource in great demand due to the unabated increase
in mobile (and hence, wireless) data consumption [4]. The research community has
addressed this capacity crunch via development of shared spectrum paradigms, wherein
the spectrum is made available to unlicensed users (secondaries) as long as they do not
interfere with the transmission of licensed incumbents (primaries). E.g., in the recent
years, the FCC has made available the CBRS band, i.e., the 3550-3700 MHz band
within the 3.5 GHz band, for shared commercial use to allow other users to utilize the
otherwise low-usage band which was previously reserved for incumbent users including
US Navy radar operators.
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FIGURE 2.1: Overall approach to localize intruders in a shared spectrum system.
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The increasing affordability of the software-defined radio (SDR) technologies makes
the shared spectrums particularly prone to unauthorized usage or security attacks. With
easy access to SDR devices |1, 2], it is easy for selfish users to transmit data on shared
spectrum without any authorization and potentially causing harmful interference to the
incumbent users. Such illegal spectrum usage could also happen as a result of infiltration
of computer virus or malware on SDR, devices. As the fundamental objective behind
such shared spectrum paradigms is to maximize spectrum utilization, the viability of
such systems depends on the ability to effectively guard the shared spectrum against
unauthorized usage. The current mechanisms however to locate such unauthorized users
(intruders) are human-intensive and time-consuming, involving FCC enforcement bu-
reau which detects violations via complaints and manual investigation [63]. Motivated
by above, we seek for an effective technique that is able to accurately localize mul-
tiple simultaneous intruders and even in the presence of dynamically changing set of
authorized users. In the following, we begin with describing the multiple transmitter
localization problem.

Multiple-Transmitter Localization (MTL). The transmitter localization problem
has been well-studied, but most of the focus has been on localizing a single intruder
at a time. However, it is important to localize multiple transmitters simultaneously to
effectively guard a shared spectrum system. E.g., a malware or virus-based attachment
could simultaneously cause many devices to violate spectrum allocation rules; spectrum
jamming attacks would typically involve multiple transmitters. More importantly, a
technique limited by localization of a single intruder could then be easily circumvented
by an offender by using multiple devices. The key challenge in solving the MTL problem
comes from the fact that the deployed sensor would receive only a sum of the signals from
multiple transmitters, and separating the signals may be impossible. In addition, the
other challenge that MTL in the context of shared spectrum system poses is the presence
of authorized users—e.g., the incumbent users and the dynamic set of secondary users
that have been allocated spectrum by the manager. To the best our knowledge, no prior
localization work has considered the presence of authorized users.

The state-of-the-art technique for the MTL problem is the recent work [63], which
essentially decomposes the MTL problem to multiple single-transmitter localization
problems based on the sensors with the highest power readings in a neighborhood.
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However, the technique has a few shortcomings: (i) it implicitly assumes a propagation
model, and thus, may not work effectively in areas with complex propagation charac-
teristics, (ii) it is not effective in the case of transmitters being located close-by, a key
challenging scenario for MTL problem, and (iii) most importantly, it can’t be extended
effectively to incorporate background authorized users, a key requirement in the context
of shared spectrum systems.

Our Approach. Transmitter localization is generally done based on observations at
deployed sensors. In particular, as in prior works [24, 63|, we assume a crowdsourced
sensing architecture wherein relatively low-cost spectrum sensors are available for gath-
ering signal strength in the form of received power. Our approach is a hypothesis-driven
Bayesian approach, viz. mazimum a posteriori (MAP) approach, wherein each hypoth-
esis is a configuration (i.e. a combination of (location,power) pair) of the potential
intruders, and the goal is to determine the hypothesis that best explains the sensor
observations. This determination is done based on the distributions (gathered during a
training phase) of sensor observations for each hypothesis. The MAP approach is known
to have optimal classification accuracy, but (i) incurs prohibitive computation cost—
exponential in number of potential intruders—when applied to the MTL problem, and
(i) requires significant amount of training cost. The focus of our work is to address
these challenges, and design a viable MAP-based approach. In particular, using MAP as
a building block, we develop an optimized approach that runs in polynomial time with
minimized training cost. We extend our technique to work in presence of authorized
users by incorporating online (real-time) training.

Motivation for MAP. Our motivation for using a MAP-based approach is multifold: First,
with sufficient training data, MAP is known to deliver optimal classification accuracy
for the MTL problem [42]. Second, the MAP approach doesn’t assume any propagation
model and thus works for arbitrary signal propagation characteristics. Third, it allows
us to also estimate the intruder’s transmit power, which can be very useful in some
applications, e.g., where the penalty is proportional to the extent of violation. Last but
not the least, it naturally extends to being able to handle a presence of an evolving set
of authorized users.

Training Cost and Optimization. The benefits of a MAP-based approach come at a cost:
the MAP framework requires prior training to build probability distributions (PDs) of
sensor observations for each hypothesis. However, most of the training occurs offline,
one-time, and can be automated e.g. via drones or robots. In our work, we develop
strategies to minimize the training cost; in particular, we reduce the number of PDs
to be constructed via a nowvel interpolation scheme suited to our unique setting, and
evaluate the impact of reduced training on the localization accuracy. We note that
the online training to incorporate presence of authorized users is needed only for the
prevailing setting (of authorized transmitters and deployed sensors) and hence incurs
minimal cost (see §2.4).

Overall Contributions. The goal of our work is to develop an efficient technique for
accurate localization of simultaneously present multiple intruders in a shared spectrum
system. The raw data are available at https://github.com/Wings-Lab /TPSN-2020-data.
In this context, we make the following four specific contributions.

1. Design an efficient localization algorithm (MAP*) for the MTL problem, based on
an optimal hypotheses-driven Bayesian approach. The designed approach pre-
dicts both locations and transmit powers of the intruders, and does not assume
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any propagation model and thus, works for arbitrary signal propagation charac-
teristics.

2. Extend the designed algorithm (MAP**) to localize effectively in the presence of
background authorized users, i.e., primaries with possibly unknown parameters
(e.g., location and transmit power) and an evolving set of secondary users.

3. Develop an effective interpolation scheme (ILDW) for our unique setting to re-
duce the one-time training cost of our scheme, without impacting the localization
accuracy much.

4. Evaluate our techniques via large-scale simulations as well as over two devel-
oped testbeds (indoor and outdoor), and demonstrate the effectiveness of our de-
veloped techniques and their superior performance compared to the best-known
techniques.

2.2 Problem, Related Work, and Methodology

In this section, we describe our model of the shared spectrum systems, formulate the
MTL problem, and discuss related work. We also describe the building block of our
approach, viz., a hypothesis-drived Bayesian localization approach (MAP).

Shared Spectrum System. In a shared spectrum paradigm, the spectrum is shared
among licensed users (primary users, PUs) and unlicensed users (secondary users, SUs)
in such a way that the transmission from secondaries does not interfere with that of
the primaries (or secondaries from a higher-tier, in case of a multi-tier shared spectrum
system [124]). In some shared spectrum systems, the location and transmit power of
the primary users may be unavailable, as is the case with military or navy radars in the
CBRS band [124]. Such sharing of spectrum is generally orchestrated by a centralized
entity called spectrum manager, such as a spectrum database in TV white space [64] or
a central spectrum access system in the CBRS 3.5GHz shared band [56]. The spectrum
manager allocates spectrum to requesting secondaries (i.e., permission to transmit up to
a certain transmit power at their location) based on their location, spectrum demand,
configurations of the primaries, other active secondaries, prevailing channel conditions,
etc.

Authorized and Unauthorized Users. Secondary users that have been explicitly
given permission to transmit at their location are termed as authorized users; the pri-
maries users are also considered as authorized users. Note that the set of authorized
users evolve over time, as more and more SUs are allocated spectrum and as some SUs
stop using the spectrum after a while. We can assume that each SU is allocated spec-
trum for a certain duration of time, after which it stops using the spectrum. Other
users that transmit without explicit permission (for that given time) are referred to as
unauthorized users or intruders.

Problem Setting and Formal Definition. Consider a geographic area with a shared
spectrum. Without loss of generality, we assume a single channel throughout this paper
(multiple channels are handled similarly). For localization of unauthorized users, we
assume available crowdsourced sensors that can observe received signal in the channel of
interest, and compute (totel) received signal strength indicator (RSSI)!. These sensors,

We do not use angle-of-arrival (AoA) measurements [137] as they require additional and complex
RF hardware.
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being crowdsourced, may be at different locations at different times. At any given
instant, the shared spectrum area has some licensed primary users and some active
secondary users; the PU configurations may not be known as can be the case for military
users. The centralized spectrum manager is aware of the set of active SUs at any time,
as each SU request is granted for a certain period of time. In addition to the authorized
users, there may be a set of intruders present in the area with each intruder in a certain
“configuration” (see §2.2.2).

The MTL problem is to determine the set of intruders with their configurations at
each instant of time, based on the set of sensor observations at that instant. See Figure
2.1. The basic MTL problem assumes no other transmissions (of authorized users) in
the background. The more general MTL problem, where there may be an evolving set of
authorized users in the background, is referred to as the MTL-SS problem. We address
the MTL problem in §2.3, and then address the more general MTL-SS problem in §2.4.

2.2.1 Related Work

Localization of an intruder in a field using sensor observations has been widely studied,
but most of the works have focused on localization of a single intruder [23, 43]. In gen-
eral, to localize multiple intruders, the main challenge comes from the need to “separate”
powers at the sensors [88], i.e., to divide the total received power into power received
from individual intruders. Blind source separation is a very challenging problem; only
very limited settings allow for known techniques |72, 107] using sophisticated receivers.
In our context of hypotheses-driven approach, the challenge of source separation man-
ifests in terms of a large number of hypotheses, a challenge addressed in §2.3. We
note that (indoor) localization of a device [10] based on signals received from multiple
reference points (e.g, WiFi access points) is a quite different problem (see [131] for a
recent survey), as the signals from reference points remain separate, and localization or
tracking of multiple devices can be done independently. Recent works on multi-target
localization /tracking are different in the way that targets are passive |32, 54, 62|, instead
of active transmitters in this work.

In absence of blind separation methods, to the best of our knowledge, only a few
works have addressed multiple intruder(s) localization, and none of these consider it
in the presence of a dynamically changing set of authorized transmitters. In particu-
lar, (i) [63] decomposes the multi-transmitter localization problem to multiple single-
transmitter localization problems based on the sensors with highest of readings in a
neighbohood, (ii) [84] works by clustering the sensors with readings above a certain
threshold and then localizing intruders at the centers of these clusters, (iii) [85] uses
an EM-based approach. The techniques of [63, 85] assume a propagation model, while
that of [84, 85] require a priori knowledge of the number of intruders present. We have
compared our approach with [63, 84] in §2.5, while [85] has high computational cost and
has also been shown to be inferior in performance to [63, 84| even for a small number of
intruders. Other related works include (i) [49] that addresses the challenge of handling
time-skewed sensors observations in the MTL problem, and (ii) [15] that addresses the
sensor selection optimization problem for our proposed hypotheses-based localization
approach.

2.2.2 MAP: Bayesian Approach for Localization

We localize intruders based on observations from a set of sensors. Each sensor com-
municates its observation to a centralized entity, the spectrum manager, which runs
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an appropriate localization algorithm to localize the intruders. In particular, we use a
hypotheses-driven Bayesian approach, as described below, where intruders are localized
by determining the most-likely prevailing hypothesis; this is done based on joint prob-
ability distributions of the sensors’ observations (constructed during a priori training).
Below, we formalize the above concepts, and the basic localization approach.

Observation; Observation Vector. Throughout this paper, we use the term o0b-
servation at an individual sensor to mean the received power over a time window of
certain duration, in the frequency channel of interest (we assume only one channel). In
particular, received power is computed from the FFT of the I/Q samples in the time
window [23]. We use the term observation vector x to denote a vector of observations
from a given set of distributed sensors, with each vector dimension corresponding to a
unique sensor.

Hypotheses. Let Hy, Hy, ..., Hy, be the set of all hy-
potheses, where each hypothesis H; represents a “con-
figuration” of potential intruders. In this chapter, we
largely assume an intruder’s configuration to be com- (L, p1)
prised of just its location and transmit power, but the
concept of configuration is quite general and could in- (L, p2)
clude any attributes (e.g., height, antenna direction,
etc.) that affects how its transmitted signal is received
at other locations. Moreover, for simplicity, we assume
that each intruder transmits at a fixed power (which
may be different for different intruders). Thus, in our (WD)
context, a configuration is simply the set of (location,
transmit power) pairs of the potential intruders. We FIGURE 2.2: Tlustration of a hy-
assume a bounded number of intruders. We use Hj to pothesis formed of three trans-
represent the hypothesis with no intruders. See Fig- mitters.

ure 2.2.

If there is only one intruder, then each hypothesis represents the location and trans-
mit power combination of the intruder, and determining the hypothesis is equivalent
to localizing the intruder and estimating its power. If we allow multiple intruders at a
time, the number of possible hypotheses can be exponential in the number of intruders;
we will address this challenge in §2.3.

Inputs. For a given set of sensors deployed over an area, we assume the following available
inputs, obtained via a priori training, data gathering and/or analysis:

e Prior probabilities of the hypotheses, i.e. P(H;), for each hypothesis H;. Prior
probabilities come from known knowledge about area, intruder’s behavior, etc.,
and can be assumed to be uniform in absence of better knowledge.

e Joint probability distribution (JPD) of sensors’ observations for each hypothesis.
More formally, for each hypothesis H;, we assume P(x|H;) to be known for each
observation x for the set of deployed sensors. The JPDs can be obtained from
prior training, a combination of training and interpolation (§2.3.3), or even by
assuming a propagation model to remove the training cost completely.

Maximum a Posteriori (MAP) Localization Algorithm. We use Bayes rule to
compute the likelihood probability of each hypothesis, from a given observation vector

X: _ P(x[H)P(H)
P(H;|x) = ST x| Hy) P(;) (2.1)
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We select the hypothesis that has the highest probability, for given observations of a set
of sensors. That is, the MAP Algorithm returns the hypotheses based on the following
equation:
arg mnz%c P(H;|x) (2.2)
i=

The above MAP algorithm to determine the prevailing hypothesis is known to be op-
timal [42], i.e., it yields minimum probability of (misclassification) error. The above
hypothesis-based approach to localization works for arbitrary signal propagation charac-
teristics, and in particular, obviates the need to assume a propagation model. However,
the above MAP algorithm does incur a one-time training cost to construct the JPDs.

2.3 MAP* Optimizing MAP for MTL

The MAP algorithm of §2.2.2 can be directly applied to localize multiple intruders with
optimal localization accuracy. However, MAP incurs prohibitive computational cost es-
pecially for a large number of potential intruders. In particular, note that if there are L
potential locations, up to T potential intruders, and W possible discrete transmit-power
levels, then the hypotheses-driven MAP algorithm needs to consider (LW)? hypotheses—
making its runtime complexity exponential in number of potential intruders, and thus,
making it impractical for localizing even a moderate number of intruders present simul-
taneously. In addition, MAP also incurs a high training cost. In the following subsections,
we develop an optimized algorithm called MAP* based on MAP but with significantly im-
proved computational and training cost. We start with optimizing the computation
cost in §2.3.1. In the following subsection §2.3.2, we derive a closed-form expression
to efficiently estimate intruder’s power in the continuous domain. Finally, we discuss
optimizing the training cost via a novel interpolation scheme ILDW.

2.3.1 Optimizing Computation Time

Basic Idea. Note that the MAP’s exponential time complexity is due to the exponen-
tial number of combinations of locations and/or powers of the potential intruders. To
motivate our proposed optimized approach, consider a simple example of 2 intruders
with fixed power p in a large area. Assume that the “transmission radius” r for power
p is much smaller than the area; we define the transmission radius as the range till
which the received signal is more than a certain noise floor. The key observation is
that if the intruders are far away (isolated) from each other (specifically, more than 2r
distance away), then they could be localized independently. If the intruders are closer,
then there is a need to separate aggregated signal at some of the sensors and hence we
must apply the standard MAP algorithm within that “subarea”; however, since each such
subarea is small (a disk of 2r radius around each possible location), the computation
time is reduced significantly. However, since we do not a priori know the configurations
of intruders, we need to consider appropriate possibilities.

In essence, our optimized approach is a divide-and-conquer approach, consisting of
a sequence of two procedures each of which is executed iteratively. The first procedure
focuses on localizing “isolated” intruders (if any) independently, while the second proce-
dure localizes the remaining intruders—by considering all possible subareas as suggested
above. The challenge lies in modifying the MAP algorithm for each iteration of the above
procedures—as the hypotheses to consider across iterations of the procedures are not
disjoint. We now describe each of the procedures.
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Procedure 1. Localize Isolated Intruders. Informally, in this procedure, we lo-
calize intruders that are sufficiently separated from other intruders. In other words, we
localize intruders x that are surrounded by sensors that receive most of their received
power from x. More formally, we localize an intruder x at location [ if (i) I’s “neigh-
borhood” has at least 3 sensors that receive most of their power from x, and (ii) there
are no other intruders in the “vicinity” of [. In essence, we iterate over all locations
[, and localize an intruder at [ if the above conditions are satisfied with high enough
probability, based on the readings of sensors around [. The precise definition of neigh-
borhood above must depend on z’s transmission radius which depends on its transmit
power; however, as x’s transmit power is unknown, we iterate over smaller and smaller
neighborhoods.

We now formally describe the procedure. Let R, denote the transmission radius for
a transmit power of p. Let R denote the maximum transmission radius, i.e.,

max R,.
Xt
In the below description, we use a fractional value f to define a neighborhood and
vicinity size. We start f equal to 1, use a disk of radius fR, as a neighborhood and
R+ fR, as the vicinity, and iterate over the procedure for reduced values of f.
(a) Let f = 1.
(b) For each location and power pair (I, p), compute P(H;p|x;,) using a form of Equa-
tion 2.1 over appropriate JPDs. Here:

e H;, represents the hypothesis that an intruder is at location [ and using p
transmit power. We also implicitly assume that there is no other intruder
present within a distance of R+ f R, from [; this ensures that the observations
in x;, are only due to the intruder at [. See Figure 2.3.

e X, represents the observation vector for all sensors, but the sensors that are
within a radius of fR, around [ use an observation of “residual” received pow-
ers, as defined below, while the remaining sensors (outside the radius of fR,
around [) use an observation of the “noise floor” (in essence, we are “zeroing”
the observations of the far-away sensors). See Figure 2.3.

(c) Denote (I,p) pairs that have P(H;,|x;,) higher than a certain threshold as peaks.
If a location [ is a peak and there are no other peaks within a distance of R + fR,,
then localize an intruder at [ with transmit power p.

(d) For each sensor s, define its residual received power (RRP) as the total received
power reduced by the sum of mean powers received from already localized intruders;
the desired mean values are available from the given JPDs.

(e) Reduce f and go back to step #2 above, unless no new intruders were localized in
(c) above. In our experiments, we used f =1,1/2,1/4 and 1/8.

The above procedure is partly inspired by the recent localization work [84]. However,
instead of discarding sensors based on their individual power and clustering the rest
as in [84], we “discard” sensors based on their neighborhood readings (i.e., likelihood
P(x|H;) values) and then “cluster” the remaining sensors. Also, we “cluster” iteratively,
for smaller and smaller neighborhoods.

Procedure 2. Localize Intruders Situated Close-By. Once we have localized
separated intruders as above, we now localize remaining intruders, if any, by applying the
general MAP algorithm independently over “subareas” that still have some sensors with
high-enough RRP (residual received power), but no intruder localized in the “vicinity.”
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F1GURE 2.3: Illustration of Hypothesis #;, in Step (b) of Procedure 1. Here, the intruder I

at location [ is transmitting at power p, with no other intruder within a distance of R + fR,

from I. The observation vector x;, consists of residual received powers from R1 to R4, and
“noise floor” from the remaining sensors.

Formally, the procedure is as follows. Let T be the maximum number of intruders
allowed within a disk of radius R, the maximum transmission radius.

(a) Let s be the sensor with highest RRP; if s’s RRP is below a certain threshold
(tantamount to noise), then quit.

(b) For t = 2 to T: Use MAP (from §2.2.2) to try to localize ¢ transmitters within a
disk of radius R around s, using observations of sensors within a radius of 2R from
s. We use a certain threshold for a posterior probability, in a similar way as for
Procedure 1.

(c) Update RRP of each sensor, and go to step (a) above.

Time Complexity. The worst-case time complexity of the first procedure is
O(LWGRlog(GRr)), where L and W are the number of potential locations (total grid
cells) and transmit power levels respectively, and Gg is the maximum number of grid
cells within a transmission range of an intruder. Here, the first term O(LW GR) is the
time to compute the likelihood values in each iteration, since the number of sensors
involved in each computation is at most Gr. Note that the number of iterations is
bounded by log(GR), as f is reduced by a constant multiplicative factor. The worst-
case time complexity of the second procedure is O(Gr(Gg)T) where T is the maximum
number of intruders allowed/possible in a transmission region (i.e., a circle of radius
at most R). Thus, the overall time complexity of the above localization algorithm is
O(L.W.GR.1og(GR) + Gr.(Gg)"). Generally, we would expect T to be a small con-
stant, as more than 3 intruders in a R-radius region with a R transmission range would
interfere with each other. If we also consider GGg as a small constant, the overall time
complexity can be considered to be O(L.W). In the following subsection, we further
reduce the time complexity by removing the factor of W.

2.3.2 Intruder Power Estimation in the Continuous Domain

In this subsection, we derive a closed-form expression to estimate an intruder’s power in
the continuous domain, for the special case of single intruder and Gaussian probability
distributions [53]. The derived result essentially removes the assumption of discrete
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power levels, and reduces the number of hypotheses to consider by a factor of W. We
use this result within Procedure 1 of previous subsection to further optimize its time
complexity and performance.

Estimating Intruder Power, Given a Location. Consider the special case of a
single intruder in an area. In this case, each hypothesis can be represented as H;p,
for each location [ and power p of the potential intruder. Let us focus on a particular
location I* and the corresponding hypotheses H;« ;. For a given observation vector x,
we wish to estimate the power P that corresponds to the hypothesis with maximum
likelihood among the hypotheses H;- ,,.

P = argmax, P(H+ p|x)

The value P can be computed by computing P(H;-,|x) for each p, but our goal is to
derive a closed-form expression for P from the given JPDs; such an expression yield
power estimate in continuous domain without computing P(H; ,|x) for each possible
discrete p.

For each sensor (location) j, let P(x;|H;« ,+) represent the probability distribution
(PD) of j’s observations x; when the intruder is at [* transmitting with power p*, the
power used at training. For a fixed {* and p*, the set of PDs P (x;|H;= ,+) are equivalent
to the JPDs defined in §2.2 under the assumption of conditional independence?. Let us
assume that the above PDs are Gaussian distributions [53], and thus, can be represented
as P(xj|Hix p=) = N (5, 0]2) for a given I* and p*. In the above setting, the power value
P that maximizes P(H;+ p|x) can actually be derived as a closed-form expression; we
state the result formally in the below lemma.

Lemma 1. Consider the special case of a single intruder in an area. For a specific
location I* and power p* (the only power used during training), let P(x;|H p) represent
the PDs of the sensor obversations at location j. Now, given the above PDs for various
J and an observation vector X, the power value P = argmax, P(H- ,|x) is given by:

S
Zj:l Ul?(x] = 5)
P+

where v = Hle a? and S equals to the number of sensors in the neighborhood of 1*. B

The proof is in Appendix A.1. Here, we give its intuition based on a special case.
Consider the special case wherein each o; is 1 for all j. In this special case, the Lemma’s

S s
equation reduces to P = p* + W, which implies that if each observation T is

¢ more than its mean p; then P is also ¢ more than p*. We note that the above result
does not extend to the case of multiple intruders. In short, the proof is a process of
solving maximum likelihood esitmaion and multiple intruders introduce transcendental
functions, thus cannot derive a closed-form solution.

Use of Lemma 1 in MAP*.  For localization of multiple intruders, Lemma 1 can
only be used in Procedure 1 of §2.3.1, due to its assumption of a single intruder. In
particular, we can Procedure 1 of §2.3.1 as follows.

2PD P(x;|Hi+p) can be computed P(x;|Hix p+) for any p, as the path-loss can be assumed to
be independent of the transmit power, and JPD P(x|H;~,) can be computed as product of PDs
P(x;|Hi p) due to the conditional independence assumption.
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e We replace R, by R, the maximum transmission radius.

e For each location [, using Lemma 1, we first compute the power p(l) such that the
hypothesis H; ;) has the most likelihood (among the hypotheses at I) using the
observations from sensors within a radius of R.

e Then, in the rest of the procedure, we only consider the (location, power) pairs of
the type (I, p(l)) for any I.

Rest of the Procedure 1 remains unchanged. The above change has two benefits. First,
the powers predicted in Procedure 1 are now continuous rather than discrete. Second,
the above removes the factor of W from the time complexity of MAP* and reduces it
to O(LGRrlog(GRr) + Gr(Gr)T) which becomes O(L) if we consider Gr and T to be
relatively small constants.

2.3.3 ILDW: Optimizing Training Cost

As in supervised machine learning algorithms, our Bayesian approach also needs training
data. We use the term training to denote the process of collecting data and building
up the JPDs for the hypotheses. Note that this training phase is done only one-time,?
and hence, a certain cost is acceptable. The training cost incurred during such data
gathering depends greatly on the exact mechanism used for such purposes, e.g., drones
with appropriate routes can be used to gather such data [91]. In general, the cost of
training would depend on the number of JPDs that need to be constructed, with the
cost reduced with reduction in the number of JPDs needed. In this subsection, we
design effective interpolation schemes that are useful in reducing the number of JPDs
gathered which in turn will reduce the overall training cost. Note that reduction in
JPDs constructed from raw data is bound to negatively impact the accuracy—we will
evaluate this trade-off in our evaluations and show that impact on accuracy is minimal
even with significant reduction in training cost.

Probability Distributions. First, we note that making the following reasonable
assumptions and observations can greatly reduce the number of JPDs/PDs to be con-
structed.

o If we assume conditional independence of sensor observations, then JPDs can
be computed from independently constructed probability distributions (PDs) of
received powers at indiwidual sensors.

e Since received power at a sensor location x due to multiple transmitters is merely
a sum of received powers [63, 95| due to individual transmitters, we can compute
PD at x for a particular hypothesis involving a set S of intruders from PDs due
to each individual intruder in S.

e Lastly, we need to only construct a PD for one transmit power for each transmitter
and sensor location pair, since path-loss is independent of transmit power.

3JPDs depend on the channel state and hence, must be updated periodically to account for any
changes in the environment (e.g., terrain, buildings, etc.); however, such environment changes are
infrequent. Also, note that the online-training of §2.4 is done repeatedly, but only for specific sensors
and authorized users, and thus incurs minimal cost. See [133] for spectrum sensing in both spatio and
temporal domains.
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FIGURE 2.4: Training for PDs at coarse-grained locations (yellow bigger dots), while estimating
PDs using interpolation at the remaining fine-grained locations (red smaller dots).

Based on the above observations, if there are L discrete locations in an area for sensors or
intruders, then a MAP-based approach requires L? PDs. Below, we propose to minimize
the number of PDs to be constructed via data gathering/training, by estimating the
remaining unconstructed PDs via interpolation.

Minimizing Training Cost with ILDW. Consider a particular location [* of a po-
tential intruder. Our eventual goal is to compute the PD for each of the L possible
sensor locations for this location [* of a potential intruder; a PD may be computed ei-
ther by constructing it directly from gathered sensor observations or by estimation via
interpolation from the constructed PDs. In particular, for effective interpolation, we
construct PDs at coarser-grid sensor locations, and estimate via interpolation the PDs
at the remaining finer-grid locations. See Figure 2.4. The exact coarseness at which
the PDs are constructed is determined by the accuracy of the interpolation scheme for
a given area and/or the impact on localization accuracy due to estimated PDs. Below,
we describe the interpolation scheme that we use for our purposes.

ILDW Interpolation Scheme. Consider a fixed transmitter location [*, and let us assume
locations Ry, Ry, - -+ , R, for which we know the path loss from [*. Now, consider a new
point Ry for which we wish to estimate the path-loss from [*. This is a traditional in-
terpolation problem and well-known schemes such as inverse distance weighting (IDW),
Ordinary Kriging (OK), k-NN, etc. have been evaluated even in the special context
of signal strength or received power [24]. However, our specific context has an unique
element. We know the location I* of the transmitter from which the path-loss is being
estimated—as we are in the training phase wherein we are gathering observations with
transmitter at {*. In light of the above unique element of our setting, and the observa-
tion of wireless signal characteristics, we use a custom interpolation technique which is a
nontrivial modification of the IDW scheme, called inverse log-distance weighting (ILDW).
The traditional IDW interpolation scheme estimates the path loss at Ry by taking a
weighted average of the path-losses at Ry, Ry, - - - , Ry, with the weight being the inverse
of the distance from Rj.

In our proposed ILDW scheme, we still estimate the path loss at Ry as a weighted
average of values at R;’s, but assign weights differently. In particular, we assign the
weight for the point R; as the inverse of the “distance” between Ry and R; in the
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FIGURE 2.5: Illustration of ILDW vs. IDW. (a) Transmitter (T), points with known (R1 and

R2) and unknown (RO) received signal strength (RSS) values. (b) Log-normal RSS function

(= -10 - 30log;,(distance)) plotted for varying distance from the transmitter T', along with

IDW-estimated RSS value at a point between R1 and R2. (¢) Log-normal RSS function and

ILDW-estimated RSS value at a point between R1 and R2, plotted on a logarithmic distance
scale.

domain where each point is represented merely by its logarithmic distance from [*, the
known transmitter’s location—i.e., each point R; is mapped to a point log d(R;,[*) on
a line. This mapping is motivated by the expectation that the actual path loss would
be somewhat similar to the log-distance path loss. Thus, the weight for the point R; is

assigned to be
1

YT Nog d(Ry, 1*) — log d(Ro, 1)]

where d() is the Euclidean distance function and the path loss at Ry is estimated as:

D i) Wil

Doy wi

where u; denotes the path loss at point R; from [*. In the above equation for weights,
if denominator is zero, then we assign w; to be equal to the maximum of the weights
among the given points (and if all denominators are 0, each weight is assigned to be 1).
For an illustration of the above scheme, see Figure 2.5. In the IDW scheme, R; and
Ry will get equal weights, but under the ILDW scheme they will get weights of 5.57 and
8.00 respectively. More importantly, it can be easily shown that, for log-distance path
loss, ILDW estimates the path loss for Ry accurately from two unknown points R; and
Ro, if d(Ry,1*) < d(Rg,1*) < d(Rg,1").

The above discussion has been on using ILDW for estimating path-loss values. In
general, it can be easily used to estimate PDs from the PDs at neighboring points—
essentially, we can use ILDW to estimate both the mean and standard deviation of a
Gaussian PD from other means and standard deviations respectively.

Ug =
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2.4 MAP** Localizing in Presence of Authorized Users

We have implicitly assumed till now that the only transmitters present in the area are
the intruders which need to be localized. In this section, we adapt our MAP* approach
described in the previous section to the setting wherein there may be authorized trans-
mitters in the background and the localization technique must take their presence into
account. In particular, in a shared spectrum paradigm, there are primary users and an
evolving set of active secondary users transmitting in the background. The key chal-
lenge comes from the fact that the set of authorized users is not static and changes over
time as allocation requests are granted and/or active secondary users become inactive
over time.

One simple way to handle background users is to just localize every transmitter, and
then remove the authorized users. However, any localization approach (including ours)
is susceptible to performance degradation with increase in number of transmitters to
be localized, especially if some of them are situated close together. Thus, this simple
approach of localizing every transmitter is unlikely to be effective, as shown in our
evaluations, especially when the number of primaries and active secondaries can be large.
Thus, here, we develop an approach based on learning PDs in real-time in response to
changes in the set of secondary users.

MAP**: Localizing with Authorized Users. Our problem is to localize intruders in a
shared spectrum system with fixed primaries and changing set of secondaries. Our
MAP** approach uses a combination of a priori (offline) and online training to construct
JPDs for appropriate hypotheses based on gathered observations, and then use these
JPDs to localize intruders in real-time using the MAP* approach described in the previous
section. We start with defining a few useful notations.

We use R to denote the set of (fixed) primaries, and IC to denote the set of secon-
daries at a given instant, and Z; to denote the 4% configuration of intruders (we can
assume the zero-th configuration to represent no intruders). We use 7 = R UK UZ;
to denote the set to all transmitters (authorized and unauthorized) at a given instant.
Finally, we use P(x|(7 = X)) to denote the joint probability distribution (JPD) of ob-
servation vectors from the deployed sensors when the prevailing hypothesis is that the
set 7 of transmitters is X. MAP™ is the sequence of following steps.

1. (Offline Step.) Construct JPDs P(x|R) and P(x|r = (Z; UR)) for all j. Since these

JPDs are independent of the secondaries, they do not change and can be done once

a priori.

2. (Online Steps.) Whenever K (set of secondaries) changes:
(a) Construct JPD P(x|T = (RUK)).
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(b) Compute P(x|T = (RUZ; UK)) for all j, from above constructed JPDs, viz.,
P(x|R), P(x|t = (Z; UR)), and P(x|T = (RUK)). See the below observation.

3. (Real-time Localization.) Periodically, each sensor sends its observation to a central-
ized entity (spectrum manager) which uses MAP* to localize any intruders present.
Here, localization essentially means determining the most likely prevailing hypothe-
sis among the hypotheses 7 = (RUZ; UK), based on the JPDs P(x|r = (RUZ;UK))
constructed in earlier steps.

Note that steps 1 and 2a are essentially learning the authorized users’ signal
charecteristics and view them as the "background signals". If there are no authorized
users, then the background signals are "quite". Else, then the background signals have
some "sound". We now state the observation that forms the basis of JPD computation
in Steps 2b; note that the noise due to sensor’s hardware gets duplicated when “adding”
two JPDs, but can be easily removed.

Observation 1. The JPD P(x|(t = AUB)) and be computed from JPDs P(x|(T = A))
and P(x|(t = B)). Similarly, JPD P(x|(t = A)) can be computed from the JPDs
P(x|(tr = AU B)) and P(x|(T = B)).

Blind Period due to Step 2. Note that the steps 2a and 2b construct or compute
the JPDs needed for localization, and thus, during their execution, the localization
cannot be done. Thus, it is important that the duration of this “blind period” in
minimal. Fortunately, step 2b being a simple mathematic computation takes only in the
order of milliseconds under efficient implementation, while 2a merely entails gathering
a sufficient number of observations to construct the desired JPD which could take
anywhere from milliseconds to a few seconds, as an observation takes only a fraction of
a millisecond [23].

Mobility of Users and Sensors. We note that MAP* works seamlessly for mobile
intruders and sensors, due to the constructed PDs. However, MAP** has the following
limitation: the sensors must remain static in between two consecutive online-training
periods (i.e., step 2 of above). If a sensor X moves, then either X’s observation must
be ignored, or that X needs to online-train itself in its new location (and there should
be no intruders during this individual online-training phase). Note that active SUs are
expected to remain static anyway, as they are allocated spectrum for a specific location.

2.5 Large-Scale Simulation Results

To evaluate our techniques in a large scale area (a few kms square), we conducted simu-
lations over a geographic area using path-loss values from the Longley-Rice propagation
model generated by open sourse software SPLAT! [79]. We describe the simulation
setting below and discuss the results.

2.5.1 Settings

Generating Probability Distributions. To evaluate our techniques over a large area
with 100s of sensor nodes, we need to run simulations with an assumed propagation
model. We use the well-known Longley-Rice [27] Irregular Terrain With Obstruction
Model (ITWOM), which is a complex model of wireless propagation based on many
parameters including locations, terrain data, obstructions and soil condition etc. and
such. We consider an area of 4km x 4km in the NY state and use the 800 MHz band for
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SPLAT! We discretize the area using 40 vertical and 40 horizontal grid lines—yielding
1600 cells each of size 100m x 100m. To generate a probability distribution (PD) at a
sensor location x due to a transmitter at location [ transmitting at power p*, we compute
the received power at z using transmit power minus path-loss from SPLAT!, and use it
as the mean of the probability distribution. For the complete PD, we assume Gaussian
distributions and use a standard deviation between 1 and 3, with higher values for pairs
(x,1) with smaller distance. As mentioned before, the PD due to multiple simultaneous
transmitters can be computed as just a “sum” of the Gaussian distributions due to
individual transmitters [63, 95].

Algorithms Compared. For the MTL problem, we compare our MAP* algorithm with
SPLOT [63] and CLUS [84] (see §2.2.1). As mentioned before, [85] has been shown to be
inferior in performance to both SPLOT and CLUS in their respective works, and thus, not
evaluated here. CLUS uses k-means [90] for clustering, and needs to be provided with the
number of clusters. To do a somewhat fair comparison, we provide CLUS with a range
of the number of intruders and use the elbow-point method to pick the best number of
clusters/intruders. In particular, the range of intruders passed to CLUS is 1 to 2z, where
x is the actual number of intruders present.

TABLE 2.1: Simulation Evaluation Parameters.

Param. Value Description
Qll 0.6 Threshold for Procedure 1’s hypothesis posterior
Q; 0.1  Threshold for Procedure 2’s hypothesis posterior
1000 Transmission radius when power is p*, (m)
p* 30 Transmit power during training, (dBm)
Sp 2 Range of intruders’ power is [p* — 0p, p* + )

For SPLOT, we use the same set of parameters values as in [63] except that we use the
confined area radius to be 800m for our large area setting ([63] only considered small
15m x 15m areas; 800m is roughly the maximum transmission radius in our large-scale
setting and other values yielded worse results). Table 2.1 gives the main parameters
of MAP* used in our evaluations. Recall that the transmission radius is the distance
between the TX and RX for which the RX’s RSS is at the noise floor (we use -80dBm).
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FIGURE 2.7: Localization performance of various algorithms in a large scale area, for varying
number of intruders
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2.5.2 Five Evaluation Metrics.
We use the following metrics to evaluate the localization methods.
1. Localization error (Leyy).
2. Miss rate (M,).
3. False alarm rate (F,).
4. Power error (Pey).

The above metrics are best explained using a simple example. Given a multi-intruder
localization solution, we first compute the Le, as the minimum-cost matching in the
bi-partite graph over the ground-truth and the solution’s locations, where the cost of
each edge in the graph is the Euclidean distance. We use a simple greedy algorithm to
compute the min-cost matching. The unmatched nodes are regarded as false alarms or
misses. E.g., if there are 4 intruders in reality, but the algorithm predits 6 intruders
then it is said to incur 0 misses and 2 false alarms and if it predicts 3 intruders then it
incurs 1 miss and 0O false alarms. The M, and F, metrics are on a per-intruder basis, so
in the above two examples: M; is 0 and 1/4 and F; is 2/4 and 0. In the plots, we stack
miss rate and false alarm rate together to show the overall difference between the true
number of intruders and predicted number of intruders. Pg, is the average difference
between the predicted power and the actual power of the matched pair in the above
bi-partite graph.

Finally for interpolation schemes, we use the metric (5) interpolation error (Ie)
defined as the estimated path-loss minus the ground-truth path-loss value.

2.5.3 Results

In this subsection, we evaluate the performance of our techniques for varying parame-
ter values, viz., number of intruders and sensors in the field, and training cost. Here,
the training cost is defined relative (specifically, as a percentage of) to the full train-
ing scenario wherein we construct each of the 1600 x 1600 PDs (one for each pair of
transmitter and sensor locations) directly from observations. E.g., 2% training cost
indicates that we construct 1600 x (16z) PDs directly, and interpolate the remaining
1600 x (1600 — 16) PDs; our proposed interpolation scheme only interpolates for sensor
locations. In general, when we vary a specific parameter, the other parameters are set
to their default values which are: 9% for training cost, 5 for number of intruders, and
240 for number of sensors. For each experiment, the said number of sensors and intrud-
ers are deployed randomly in the field, with the intruders deployed in the continuous
location domain while the sensors deployed only at the centers of the grid cells. Each
data point in the plots is an average of 50 experiments.

Varying Number of Intruders. First, we compare the localization accuracy of vari-
ous algorithms for varying number of intruders. See Figure 2.7. We vary the number of
intruders from 1 to 10. We observe that the localization error of MAP* is the minimum
across the three algorithm. The localization error is 45% — 74% less than SPLOT. In
terms of the M, and F,, MAP* also performs others which confirms the overall perfor-
mance of MAP* to be the best among the algorithms compared. In terms of absolute
performance, note that the localization error of 50-150m indicates an error of 1-2 grid
cells, and thus is minimal in the context of the large area of 4km by 4km with 1600 cells
and a sensor population of 240. Investigating further, we observe that misses in MAP* are
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TABLE 2.2: MAP* Power Error (dB)

# Intru.  MAE ME

1 0.56 -0.07
3 1.02  0.89
5 131 097
7 1.52  1.16
10 147 1.04

mostly due to the interpolated PDs (note that only 9% of the PDs are constructed from
the actual sensor observations, and the remaining 91% are interpolated), while SPLOT’s
misses are mainly from the case of two or more intruders being close to each other. This
demonstrates the superior ability of MAP* to localize intruders that are close-by via the
designed sequence of Procedures 1 and 2.

Intruder Power Estimation, and Computation Time. Table 2.2 shows the mean absolute
error (MAE) and mean error (ME) of the intruder’s predicted power by MAP*. Note that
CLUS and SPLOT do not predict intruder’s power, and hence, not shown. We observe that
MAP* is able to predict intuder’s power quite accurately. The errors increase with the
increase in number of intruders. Also, the mean error begins at near zero and then turns
positive. Table 2.3 shows the running time of various algorithms over an Intel i7-8700
3.2 GHz processor. We see that CLUS is the fastest, and the running times of MAP* and
SPLOT are comparable for small number of intruders, but for larger number of intruders,
MAP* takes longer time than SPLOT mainly because of more number of iterations of the
computationally-intensive Procedure 2.

Varying Sensor Density. We now vary the total number of sensors in the field, and

TABLE 2.3: Running time (s)

# Intru. MAP* SPLOT CLUS

1 0.55 0.6  0.03
3 1.07  1.02 0.11
5 5.74 1.35  0.23
7 8.14 1.63  0.30

10 16.50 1.89 041
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FI1GURE 2.9: Estimation errors for interpolation schemes for varying training data

observe the impact on the performance of various algorithms. See Figure 2.8, where
the number of sensors is varied from 80 to 400. We see that all algorithms perform
better with increasing number of sensors as expected, with MAP* performance improving
significantly (in both Ley, as well as f,. +m,) as number of sensors is increased from 80
to 160. More importantly, except for very low number of sensors (i.e., 80), MAP* handily
outperforms the other two algorithms.

Varying Training Cost. Finally, we now investigate how the training cost (i.e.,
number of PDs constructed from raw observations) affects the performance of our MAP*
algorithm. Note that the other algorithms do not depend on the training data, hence
not shown. We first evaluate the interpolation error of our ILDW scheme for varying
training cost (number of known PDs) by comparing with the traditional IDW scheme
on which it is based. See Figure 2.9, which plots the mean absolute error (MAE) as well
as mean error (ME). As the interpolation error is substantially higher for points that are
closer to the transmitter, we plot MAE and ME as averaged over all interpolated points
as well as over just the points close (less than 800m away) to the transmitter. Note that
the PDs at sensor locations closer to the transmitter would have a stronger bearing on
the localization accuracy, and thus, the MAE and ME values for points closer to the
transmitter are of more significance. We observe here that as expected both MAE and
(absolute value of) ME decrease with increase in the training cost for both IDW and
ILDW, but MAE and ME of ILDW is significantly lower than that of IDW especially for
low percentages of training cost and when the points are close to the transmitter.

We now plot the performance of MAP* for varying training data; see Figure 2.10. As
expected, the performance metrics show general improvement with increase in amount
of training. More importantly, we note that with 5-10% of training, MAP* achieves perfor-
mance comparable to that with 100% training, suggesting that our interpolation scheme
is largely effective as long as 5-10% of PDs are constructed from raw observations.

In Presence of Authorized Users (MAP**). We now evaluate the performance of
our MAP** approach which is tailored to work in the presence of authorized users. To
evaluate MAP**| we place 5 authorized users in the area—with 2 primary and 3 secondary
users. The primary users are placed at fixed locations, while the secondaries are put at
random locations. We assign each authorized user a random power in the range of 30 to
32dBm, while, as before, a random power between 28 and 32dBm to the intruders. To
ensure that these 5 authorized users do not “interfere” with each other, we ensure that
the distance between any two of these authorized users is at least 1000m. We compare
MAP** with the simpler approach called MAP** that uses MAP* to localize all transmitters
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FI1GURE 2.10: Localization performance of MAP* in a large scale area, for varying training data

(authorized as well as intruders) and then removes the predicted transmitters that
are closest to the authorized users. See Figure 2.11, which shows that MAP** easily
outperforms MAP** for varying number of intruders.
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FIGURE 2.11: Localization performance of MAP*T and MAP** in large-scale simulations with
authorized users present, for varying number of intruders

2.6 Testbed Implementation

In this section, we implement our techniques over commodity devices and evaluate them
over two small-scale testbeds—one indoor and one outdoor. Outdoor environment is a
realistic setting for our target application of shared spectrum systems, while the indoor
environment provides more challenging signal attenuation characteristics due to walls
and other obstacles.

Sensor and Transmitters Used. Our low-cost (sub $100, see [34] for a measure-
ment study of low-cost spectrum sensors) sensing device is composed of a single-board
computer Odroid-C2 with an RTL-SDR dongle which connects to a dipole antenna. We
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(A) Indoor lab environment (B) Floor plan

FIGURE 2.12: Indoor testbed. (a) Our lab used for the indoor testbed, (b) The lab’s floor plan.

(A) Outdoor parking lot environment)| (B) Satellite

FIGURE 2.13: Outdoor testbed. (a) Parking lot picture, (b) Satellite image of the parking lot;
the red box is the area of the experiment, and the stars are the locations of sensing devices
during evaluation.

deploy 18 of these sensing devices in our indoor and outdoor testbeds, and configure
them for low gain. For transmitters/intruders, we use USRP B210 and HackRF devices
powered by laptops; we place these on a cart for mobility. These transmiter devices are
uncalibrated, and there is no way to assign a specific transmit power. However, they
have a configurable parameter called gain which is almost perfectly correlated to power
when the gain is in a specific range, i.e., when the transmitter’s gain is increased by 1,
the receiver’s signal strength increases by 1dB. We thus use the gain parameter to adjust
transmit power in the USRP devices. For indoor experiments, the location is manually
derived, while for outdoor experiments, we use GPS dongles connected to the laptops.
For collecting sensor observations, we implemented a Python repository in Linux that
measures spectrum in real time at 915MHz ISM band and 2.4Msps sample rate. The
repository collects 1/Q samples fetched from the RTL-SDR dongle and computes the
RSS value, then record the RSS along with timestamp and location. These three pieces
of information are sent to a server that runs the localization algorithms.

Testbeds. The indoor testbed is built in a lab of our Computer Science building.
Figure 2.12 depicts the lab with its floor plan. The red box in the floor plan is the area
where experiments are conducted. The area is 9.6 x 7.2 m? (or 2177 square feet) large,
with four rows of desks. The middle two rows are separated by a wooden board. The
area is imagined to be divided into 48 grid cells each of size 1.2m x 1.2m, with the help
of ceiling tiles each of which is 0.6m x 0.6 m. The outdoor testbed is over an open
space parking lot. See Figure 2.13. The area is 32m x 32m. We divide the area into 100
grid cells with each cell representing an area of 3.2m x 3.2m. The GPS device returns
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FIGURE 2.14: Localization performance of varies algorithms in an indoor testbed

location in (latitude, longitude) and the program converts it into coordinates. We use
an outdoor WiFi router and long power cords for network and electrical connection
respectively. During the evaluation, the 18 sensing devices are placed on the ground
and are randomly spread out.

Training. In both the testbeds, for training (i.e., constructing non-interpolated PDs),
we first pick 18 random grid cells and place sensors in their approximate centers. Then,
we manually move the transmitter around in a cart through each of the grid cells. For
the USRP transmitter, we use a gain value of 45 in the indoor environment and 58 in
the outdoor testbed. We use a higher gain for outdoors to allow the transmitter to
have a larger transmission range in a larger area. With each grid cell, the transmitter
transmits from 3 to 4 different points within each grid cell, and for each such location of
the transmitter, the sensors (at the 18 picked locations) gather tens of signal strength
readings. From these readings, we construct a Gaussian probability distribution from
each grid cell location of the transmitter. More specifically, for a particular grid cell
location of the transmitter, we average over the readings from multiple TX positions
within that particular grid cell—this process of averaging different positions of the TX
inside a grid cell makes the Gaussian distributions more robust to multipath fading and
shadowing. The overall training process takes an hour for indoors, and about two and
a half hours for outdoors.

Evaluation. For evaluation, in both testbeds, we place the 18 sensors at centers of grid
cells that are randomly chosen and are different from the cells chosen for training above.
The chosen locations for the outdoor tested are shown in Fig. 2.13(b). We choose the
intruder’s gain/power to be in the range of [p* — 1, p* + 1], where p* is the gain/power
used during the training phase as mentioned above. Roughly half of our experiments
involve close-by (in the same or adjacent grid cells) intruders. Localization is done on
a laptop which listens to HTTP requests containing the sensors’ observations.

2.6.1 Results

Localization Metrics. Figure 2.14-2.15 show the localization results for the indoor
and outdoor testbeds respectively. Overall, the results indicate that MAP* performs
the best across all metrics, with the overall performance gap between MAP* and SPLOT
increasing with the increase in number of intruders. When the number of intruders
is 3, the performance of SPLOT is significantly worse than MAP* due to a significantly
higher (84% for indoors and 53% for outdoors) sum of miss and false-alarm rates and
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FIGURE 2.15: Localization performance of varies algorithms in an outdoor testbed

43% higher localization error. The CLUS algorithm generally performs the worst, but
its performance doesn’t have a strong correlation with the increase in the number of
intruders; recall that CLUS is given the range of number of intruders as an extra piece
of information compared to the other algorithms. In terms of absolute performance, we
see that the localization error of MAP* is roughly around 1 or less grid cell, and the sum
of miss-rate and false-alarm is between 5-15%.

TABLE 2.4: Interpolation Mean Absolute Error (MAE) and Mean Error (ME) in dB for IDW
and ILDW

IDW ILDW IDW ILDW
Environment | (MAE) (MAE) (ME) (ME)
Indoor 2.6 1.7 1.7 0.25
Outdoor 6.2 2.7 5.8 0.48

Interpolation Error. Table 2.4 show the interpolation mean absolute error (MEA) as
well as mean error (ME) of IDW and ILDW when the transmitter and receiver are close
by (i.e., within a distance of 3 grid cells). When the transmitter and receiver are far
away, the difference of IDW and ILDW is small and thus not shown. We see that when
compared with IDW, our ILDW interpolation scheme decreased the mean absolute error
by 35 percent in the indoor environment and 56 percent in the outdoor environment. In
terms of mean error, ILDW reduced the error compared to IDW by as large as 86 percent
and 92 percent respectively. This is because IDW mostly tends to estimate the value to
be larger than the ground truth, while ILDW’s estimates are more even across the ground
truth.

TABLE 2.5: Power Prediction Mean Absolute Error (MAE) and Mean Error (ME) in dB for
indoor and outdoor testbed

Indoor Outdoor Indoor Outdoor
# Intruder | (MAE) (MAE) (ME) (ME)

1 0.34 0.50 -0.02 0.02
2 0.57 0.63 0.10 0.54
3 0.77 0.90 0.49 0.76

Intruder Power. Table 2.5 show the errors in the predicted powers of the intruders
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in MAP*. We see that the outdoors have a slightly higher power prediction error, likely
because of a larger number of grid cells. We also note that with the increase in the
number of intruders, the error in predicted power increases.

2.7 Conclusion

In this chapter, we have developed an efficient Bayesian approach with a noval inter-
polation scheme to localize multiple transmitters in presence of authorized users, and
demonstrate its superior power over large-scale simulations and smaller scale indoor
and outdoor testbeds. In our future work, we wish to extend our techniques to allow a
continuous location domain and design methods to further minimize training cost. In
addition, we will consider alternate signal measurements such as angle-of-arrival (AoA).
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Chapter 3

DeepMTL: Deep Learning Based
Multiple Transmitter Localization
and Power Estimation

In this chapter, we address the problem of Multiple Transmitter Localization (MTL).
MTL is to determine the locations of potential multiple transmitters in a field, based
on readings from a distributed set of sensors. In contrast to the widely studied single
transmitter localization problem, the MTL problem has only been studied recently in a
few works. MTL is of great significance in many applications wherein intruders may be
present. E.g.. in shared spectrum systems, detection of unauthorized transmitters and
estimating their power are imperative to efficient utilization of the shared spectrum.

In this chapter, we present DeepMTL, a novel deep learning approach to address
the MTL problem. In particular, we frame MTL as a sequence of two steps, each of
which is a computer vision problem: image-to-image translation and object detection.
The first step of image-to-image translation essentially maps an input image represent-
ing sensor readings to an image representing the distribution of transmitter locations,
and the second object detection step derives precise locations of transmitters from the
image of transmitter distributions. For the first step, we design our learning model
sen2peak, while for the second step, we customize a state-of-the-art object detection
model YOLOv3-cust. Using DeepMTL as a building block, we also develop techniques to
estimate transmit power of the localized transmitters. We demonstrate the effectiveness
of our approach via extensive large-scale simulations and show that our approach out-
performs the previous approaches significantly (by 50% or more) in performance metrics
including localization error, miss rate, and false alarm rate. Our method also incurs a
very small latency. We evaluate our techniques over a small-scale area with real testbed
data and the testbed results align with the simulation results.

3.1 Introduction

The RF spectrum is a limited natural resource in great demand due to the unabated
increase in mobile (and hence, wireless) data consumption [4, 83]. In 2020, the U.S.
FCC moves to free up 100 MHz of previously military occupied mid-band spectrum in
the 3.45-3.55 GHz band for paving the way for 5G development. Also, the research and
industry communities have been addressing this capacity crunch via the development
of shared spectrum. Spectrum sharing is the simultaneous usage of a specific frequency
band in a specific geographical area and time by a number of independent entities
where harmful electromagnetic interference is mitigated through agreement (i.e., policy,
protocol) [46]. Spectrum sharing techniques are also normally used in 5G networks to
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enhance spectrum efficiency [68]. However, protection of spectrum from unauthorized
users is important in maximizing spectrum utilization.

The increasing affordability of the software-defined radio (SDR) technologies makes
the shared spectrum particularly prone to unauthorized usage or security attacks. With
easy access to SDR devices (e.g. HackRF, USRP), it is easy for selfish users to transmit
data on a shared spectrum without any authorization and potentially causing harmful
interference to the incumbent users. Such illegal spectrum usage could also happen as a
result of infiltration of computer viruses or malware on SDR devices. [68] depicts three
cases of spectrum attack. As the fundamental objective behind such shared spectrum
paradigms is to maximize spectrum utilization, the viability of such systems depends
on the ability to effectively guard the shared spectrum against unauthorized usage. The
current mechanisms however to locate such unauthorized users (intruders) are human-
intensive and time-consuming, involving the FCC enforcement bureau which detects
violations via complaints and manual investigation [63]. Motivated by the above, we seek
an effective technique that is able to accurately localize multiple simultaneous intruders
(transmitters). Below, we describe the multiple transmitter localization problem.

Multiple Transmitter Localization (MTL). The transmitter localization problem
has been well studied, but most of the focus has been on localizing a single transmitter
at a time. However, it is important to localize multiple transmitters simultaneously
to effectively guard a shared spectrum system. E.g., a malware or virus-based attach-
ment could simultaneously cause many devices to violate spectrum allocation rules;
spectrum jamming attacks would typically involve multiple transmitters. More impor-
tantly, a technique limited by the localization of a single intruder could then be easily
circumvented by an offender by using multiple devices. The key challenge in solving
the multiple transmitter localization (MTL) problem comes from the fact that the de-
ployed sensor would receive only a sum of the signals from multiple transmitters, and
separating the signals may be impossible.

Prior Works. The MTL problem has been recently addressed in a few prior works, among
which SPLOT [63], MAP [136], and DeepTxFinder [140| are the most prominent. SPLOT
essentially decomposes the MTL problem to multiple single-transmitter localization prob-
lems based on the sensors with the highest power readings in a neighborhood. However,
their technique implicitly assumes a propagation model, and thus, may not work effec-
tively in areas with complex propagation characteristics, and it is not effective in the
case of transmitters being located close by (a key challenging scenario for MTL prob-
lem). Our recent work MAP solves the MTL problem using a hypothesis-driven Bayesian
approach; in particular, it uses prior training in the form of distributions of sensor read-
ings for various transmitter locations, and uses the training data to determine the most
likely configuration (i.e., transmitters’ locations and powers) for a given vector of sensor
readings. However, to circumvent the high computational cost of a pure Bayesian ap-
proach, MAP uses a divide and conquer heuristic which results in somewhat high number
of misses and false alarms while still incurring high latency. DeepTxFinder uses a CNN-
based learning model approach; however, they use a separate CNN model for a specific
number of transmitters and thus may incur high model complexity and training cost
while also limiting the number of transmitters that can be localized. In our evaluations,
we compare our work with each of the above approaches.

DeepMTL: Our Two-Step Approach. As in prior works [24, 63|, we assume a crowd-
sourced sensing architecture (See Fig. 3.1) wherein relatively low-cost spectrum sensors
are available for gathering signal strength in the form of received power. We use a
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FIGURE 3.1: Multiple transmitter localization using a distributed set of sensors. Sensing data

is uploaded to a spectrum manager server in the cloud. DeepMTL is a deep learning approach

to multiple transmitter localization which helps protect spectrum against unauthorized usage.
After that, prediction of transmission powers happens using DeepMTL as a building block.

convolutional neural network (CNN) based approach to solve the MTL problem. In par-
ticular, we frame MTL as a sequence of two steps: image-to-image translation and object
detection, each of which is solved using a trained CNN model. The first step of image-
to-image translation maps an input image representing sensor readings to an image
representing the distribution of transmitter locations, and the second object detection
step derives precise locations of transmitters from the image of transmitter distributions.
We name our MTL approach as DeepMTL.

Motivation. Our overall approach and its various aspects are motivated by the following
considerations. First, we use a learning-based strategy to preclude assuming a propaga-
tion model [63] or conducting surveys of sensors reading distributions |[136]. Assumption
of propagation model suffers from the fact that even sophisticated propagation mod-
els yield unsatisfactory accuracy and thus lead to degraded performance. Among all
learning-based strategies, deep learning can implicitly capture the environment charac-
teristics (e.g., objects, walls, landscape) in the neural network layers’ weights learned
through the training of the data [7]. Even though a learning-based approach incurs a
one-time high training cost, it generally incurs minimal latency during inference, which
is an important consideration for our MTL problem. The intruder detection should incur
minimal latency to be effective. Second, the geographical nature of the MTL problem
suggests that convolutional neural networks (CNNs) are well-suited for efficient learning
of the desired function. In particular, the features of the MTL problem can be represented
in an image (2D matrix) corresponding to their geographic locations, which can be fed
as an input to an appropriate CNN model which can leverage the spatial correlation
among the input features to facilitate efficient learning. Lastly, we use a two-step archi-
tecture to facilitate efficient training by essentially providing an additional intermediate
image. In particular, we are able to map each step to well-studied standard computer
vision problems, allowing us to build upon known techniques.

Overall Contributions. The goal of our work is to develop an efficient technique
for accurate localization of simultaneously present multiple transmitters/intruders. We
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also extend our technique to address various extensions such as power estimation and
the presence of authorized users. Overall, we make the following contributions.

1. For the MTL problem, we develop a novel two-step CNN-based approach called
DeepMTL approach. For the first step of image-to-image translation, we develop
a CNN model that translates an image representing the sensor readings into an
intermediate image that encodes distributions of transmitter locations (Section
3.3). For the second step of mapping transmitter distributions to precision loca-
tions via object detection, we customize the well-known object detection method
YOLOv3 (Section 3.4).

2. For localization of transmitters in presence of authorized users, we augment the
DeepMTL model by adding a pre-processing step based on a CNN-model that first
reduces the sensor readings by the power received from the authorized users (Sec-
tion 3.5).

3. To estimate transmit power of the intruders, we augment our DeepMTL model
with a power-estimation CNN-model which iteratively estimates the power of
transmitters in sub-areas (Section 3.6).

4. We evaluate our techniques via large-scale simulations as well as a small-scale
testbed data and demonstrate their effectiveness and superior performance com-
pared to the prior works (Section 3.7).

A preliminary version of this paper appeared at IEEE WoWMoM 2021 [134].

3.2 Background, MTL Problem and Our Approach

In this section, we describe the background of the shared spectrum systems, formulate
the MTL problem, then describe our methodology.

Shared Spectrum System. In a shared spectrum paradigm, the spectrum is shared
among licensed users (primary users, PUs) and unlicensed users (secondary users, SUs)
in such a way that the transmission from secondaries does not interfere with that of
the primaries (or secondaries from a higher-tier, in case of a multi-tier shared spectrum
system). In some shared spectrum systems, the location and transmit power of the
primary users may be unavailable, as is the case with military or navy radars in the
CBRS band. Such sharing of spectrum is generally orchestrated by a centralized entity
called spectrum manager, such as a spectrum database in TV white space [64] or a central
spectrum access system in the CBRS 3.5GHz shared band [56]. The spectrum manager
allocates spectrum to requesting secondaries (i.e., permission to transmit up to a certain
transmit power at their location) appropriately so as to avoid interference to primaries.
Users that transmit without explicit permission are referred to as unauthorized users
or intruders; the MTL problem is to essentially localize such intruders.

MTL Problem. Consider a geographic area with a shared spectrum. Without loss of
generality, we assume a single wireless frequency! throughout this paper?. For localiza-
tion of intruders, we assume available crowdsourced sensors that can observe received

1To avoid confusion with image channels, we use wireless frequency instead of the perhaps more
appropriate wireless channel term.

2Multiple wireless frequencies can be handled independently. Note that if we assume the wireless
propagation characteristics to be similar for different frequencies, then we do not need to train different
models for each of them. Our localization techniques would still work for scenarios wherein the intruders
may change their transmit frequencies dynamically.
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FIGURE 3.2: The overall two-step CNN architecture of the DeepMTL model. The first step

is the sen2peak, whose higher idea is to translate the input image of sensor readings to the

image of peaks where each peak implies a transmitter. The sen2peak architecture is illustrated

in Fig. 3.4. The second step is YOLOv3-cust, a customized version of YOLOv3, to perform

object/peak detection in the output image of the first step. This step returns the precise

location coordinates of TX. The YOLOv3-cust architecture is illustrated in Fig. 3.5. A zoom-in
of the peak detection result of the second step is in Fig. 3.6.

signal in the wireless frequency of interest, and compute (total) received signal strength
(RSS). RSS can be measured using low-cost sensors and has been shown to achieve good
accuracy for single-transmitter localization [10]. In the related work Section 3.8, we will
discuss signal metrics other than RSS, such as AoA, ToA, etc. At any instant, there
may be a set of intruders present in the area with each intruder at a certain location
transmitting with a certain power which may be different for different intruders.

The MTL problem is to determine the set of intruders with their locations at each
instant of time, based on the set of sensor observations at that instant. For the main MTL
problem, we assume that there are no primary or authorized users, and thus, assume
that the sensor readings represent aggregate received power from the transmitters we
wish to localize. However, in Section 3.5, we investigate the more general MTL problem
where the background primary and/or secondary users may also be present.

Our Approach. In our context, each sensor communicates its observation to a central-
ized spectrum manager which then runs localization algorithms to localize any potential
(multiple) transmitters. We design and implement a novel two-step localization algo-
rithm named DeepMTL, as illustrated in Fig. 3.2, based on CNN models. The first step
(Section 3.3) is a four-layer image-to-image translation CNN model that is trained to
translate an input image representing sensor readings to an image of transmitters’ loca-
tions distributions. Each distribution of a transmitter can be visualized as a mountain
with a peak, so we name this model sen2peak. The second step (Section 3.4), called
YOLOv3-cust, is a customized object-detection method build upon YOLOv3|96] which
localize the objects/peaks in the translated image. The high-level motivation behind
our two-step design is to frame the overall MTL problem in terms of well-studied learning
problem(s). The two steps facilitate efficient learning of the models by supplying an
intermediate image with the training samples.

3.3 DeepMTL Step 1: Sensor Readings to TX Location Dis-
tributions

In this section, we present the first step of our overall approach to the MTL problem,
i.e., the image-to-image translation step which translates/transforms the sensor reading
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FIGURE 3.3: Illustration of DeepMTL first step’s input and output images. (a) Area with

distributed sensors and transmitters to be localized. (b) Input image representing the sensor

readings (RSS) and locations. (c¢) Output Image, where we put a 2D Gaussian distribution
with its “peak" at the transmitter’s location.

to distributions of TX locations. Here, we first create a grayscale image to represent
the input sensor readings; this image encodes both the sensors’” RSS readings and the
sensors’ physical location. We then train and use a convolutional neural network (CNN)
model to transform this input image to an output image which represents the distribu-
tion of TX locations. Pixels in the output image that have higher values will have a
higher chance of having a TX being present at that location.

Input/Output Image Sizes and Tiling Approach for Large Areas. We need
to represent data by images of certain sizes. Typically, an image should be a size of a
few hundred pixels by a few hundred pixels, since a thousand pixels by thousand pixels
images will consume too much GPU memory. In this chapter, we pick 100 x 100 as the
size for both our input and output images in the first image-to-image translation step.
Given an area that we want to monitor and a 100 x 100 size image, we will know how
large an area a pixel will represent and we call it a pixel subarea. A large pixel subarea
could certainly lead to high localization errors, due to very coarse granularity. We can
address this by using a “tiling" technique, wherein we divide the given area into tiles,
then represent each tile by 100 x 100 size image and use our localization techniques in
the tile. We can do some post-processing to handle cross-tiling issues (e.g., [140] uses
overlapping tiles and employs a voting scheme inside the overlapping tile area).

3.3.1 Input Image Representing Sensors’ Readings

We localize transmitters based on observations from a set of sensors, i.e. solve the
MTL problem assuming only intruders. The input of the localization method is sensor
observations. Here, an observation at a sensor is the received power (RSS, in decibels)
over a time window of a certain duration, in the frequency of interest (we assume only
one wireless frequency). RSS is computed using FFT over the I/Q samples collected
in a time window. More specifically, in our evaluations, we use a Python API [59]
that computes the power spectral density from a sequence of signal data (I/Q samples),
and then, we choose the RSS at the frequency of interest. Different than [63, 136], we
represent the sensor information, i.e.; their locations and observations, in a 2D input
image. We use a 2D grayscale image, and let us denote it X. The pixel X} ; denotes the
observation of the sensor at the grid cell whose index is (4, j). For example, X020 = —50
denotes there is a sensor at coordinate (10,20) with an RSS reading of —50 dB. If there
is no sensor at location (7, j), we assign the noise floor A" (i.e. -80 dB) value to Xj ;. Note
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that the above pixel values (representing the sensor observations) are not the standard
image pixel values that lie in the [0, 255] range. Also, since the pathloss computed by
propagation models during simulations could be real numbers, the sensor observation
values could be real numbers. So we use a 2D matrix with real numbers instead of an
image object.

Before passing this sensor reading image as input to our CNN model, we do a
normalization step; we first subtract the N from each value and then divide it by
—N/2. Let X' denote the 2D matrix after the normalization of X. The value X;,j

will be zero at locations without sensors, and X;J will be a positive real number (in
most cases, less than two) for locations with sensors. E.g., if X920 = —50, then the
X' 10,20 equals to (=50 — (—80))/40) = 0.75. Fig. 3.3 (b) shows how a matrix is used to
represent the input information that contains both the RSS and the spatial location of
the distributed sensors in an area that exists 14 sensors in Fig. 3.3(a).

3.3.2 Output Image Representing TX locations’ Distributions

We now focus on designing the output image to represent the distribution of TX lo-
cations; the output image is essentially the “label" assigned to each input image that
guides the training of the CNN model. Fig. 3.3(c) illustrates the output image of the
image-to-image translation step in Fig. 3.3(a) that contains three transmitters.

A straightforward representation that represents the TXs with locations is to just use
an array of (z,y) elements where each (x,y) element is the location of a transmitter, as
in [140]. However, this simple representation is less conducive to efficient model learning,
as the representation moves away from spatial representation (by representing locations
as positions in the image) to direct representation of locations by coordinate values.
E.g., in [140]’s CNN-based approach to MTL problem, the authors assume a maximum
number N of transmitters and train as many as N + 2 different CNN models and
thus, limiting the overall solution to the pre-defined maximum number of transmitters.
Instead, in our approach, we facilitate the learning of the overall model, by solving the
MTL problem in two steps, and in this step of translating sensors’ reading to transmitter
locations’ distributions, we represent the output also as an image. This approach allows
us to use a spatial learning model (e.g. CNN) for the second step too, and preclude use
of regression or fully-connected layers in the first step.

Inspired by recent work on wireless localization problem [7] that represents the input
and output as images, we represent our output of the first step as an image as well.
The output image is a grayscale image implemented as a 2D matrix with real numbers.
In the output image, we use 25 (5 x 5) pixel values to represent the presence of a
transmitter. It is desirable to use an odd side length square (e.g., 3 X 3, 5 x5, 7 x 7)
for symmetry. For a 100 x 100 size input we use, while 3 x 3 gives too little information
for a transmitter and 7 x 7 generates too many overlaps for close by transmitters, 5 x 5
is the sweet spot. Other pixels far away from any transmitter are zero-valued. Among
multiple potential ways to represent a transmitter presence by a number of pixels,
we found that using a 2D Gaussian distribution around the pixel of TX location, as
shown in Fig. 3.3(c), yields the best model performance. Thus, a geographic area with
multiple transmitters present is represented by a grayscale image with multiple Gaussian
distributions, with each Gaussian distribution’s peak inside the pixel corresponding to
transmitter’s location. Based on preliminary performance tests, we pick the amplitude
of the 2D Gaussian peak to 10, the standard deviation to 0.9, and located the center of
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Step 1: Image-to-image translation

FIGURE 3.4: Architecture of the first step CNN, a four layer image-to-image translation model

(sen2peak). The figure displays how the data volume flows through the various convolutional

layers. C stands for Conv2d, and for each Conv2d layer, the five values shown are [number of

input channels, number of output channels, kernel size, stride, padding]. G stands for group

normalization, and, for each group normalization, the two values shown are [number of groups,
number of channels]. See §3.3 for details.

the distribution at the location of each transmitter. Note that the location of the TX
is in continuous domain and usually not at the center of the grid cell.

3.3.3 Image-to-Image Translation: sen2peak CINN Model

At a higher level, we use a deep and spatial neural network, in particular a CNN, to
learn the approximation function that maps the input image (of sensor readings) to
the output image (of Gaussian distributions for TX locations). We refer to this as
the image-to-image translation model. Our approach is inspired by the recent work [7]
that frames a different wireless localization problem as an image-to-image translation
problem. We incorporate the idea into our multiple transmitter localization problem
and utilize recent advances in the computer vision area. Encoder-decoder based CNN
models like U-Net [101] with down-sampling and up-sampling convolutional layers have
been successful in effectively learning image-to-image translation functions. However,
in our setting, we observe that the usage of down-sampling layers (such as max-pooling)
degrades the performance of the model, especially in the case when transmitters may be
close to each other wherein the model is unable to distinguish the nearby transmitters
and generate a single large distribution in the output image. To circumvent this, we
avoid using any down-sampling layers in our model and redesign the image-to-image
translation model as described below.

sen2peak CNIN Model. We refer to our image-to-image translation CNN model as
sen2peak, as it translates sensors’ readings to “peaks" with Gaussian distributions cor-
responding to transmitter locations. It has four ® convolutional layers, as shown in
Fig. 3.2(a). We use an input size of 100 x 100. The number of convolutional filters are
varying for different layers, with up to 32 in one of the layers. We tried doubling the
filter numbers at each layer, but it does not lead to significant improvement (it does
yield a lower error, but the output image does not improve significantly to impact the
second step of our architecture). We use a kernel size of 5 x 5, a stride of 1, and a
padding of 2. This ensures that the dimensions do not decrease and all the pixels are
treated uniformly, including the ones at the edge of the image. With the above four
convolutional layers, the receptive field [78] of each neuron in the output layer is 17 x 17.

3We observe that a four-layer lightweight and symmetric sen2peak model produces good results and
adding more layers gives marginal improvement.
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Normalization layers can improve the learning process. We chose group normalization
[125] and put it after the first three convolutional layers. We compared group and batch
normalization [60] methods in our context, and observed better performance with the
group normalization. For the activation layers, we select rectified linear unit (ReLU)
and put it after the group normalization layers.

The Loss Function. Our inputs (X) and output (Y) are images. We use L2 loss func-
tion which computes the mean squared error aggregated over individual pixels. More
formally, our loss function is defined as:

N

1

v ) " ||sen2peak(X;) — Yi[|? (3.1)
7

where N is the number of samples used in computing the loss, || - ||? is L2 loss function,
X; and Y; are the iz, sample’s input and output images respectively, and sen2peak(X;)
is the predicted output image corresponding to the input X;. During training, we use
Adam [66] as the optimizer that minimizes the loss function. We set the learning rate

to 0.001 and the number of epochs to 20 and the model converges well.

3.4 DeeplMTL Step 2: TX Locations’ Distributions to Precise
Locations

In this section, we present the second step of our overall localization approach. We
refer to this step as the peak detection step, as the goal is to detect the peaks within
the Gaussian distributions in the input image (which is also the output image of the
first step). The first step outputs an image that has multiple distributions (presumably,
Gaussian), whose peaks need to be interpreted as precise locations of the transmit-
ters/intruders. As, our end goal is to determine the precise locations of the present
transmitters, we develop techniques to detect peaks within the output image of the first
step. We propose two different strategies for the peak-detection task. The first strategy
is a straightforward peak detection algorithm based on finding local maximal values,
while the second strategy is based on framing the problem as an object detection task;
for the second strategy, we utilize a widely used state-of-the-art computer vision model
called YOLOv3 [96].

Simple Peak Detection Method. The simple and straightforward peak detection
method is to designate pixels with locally maximal values as peaks, subject to certain
thresholds. More formally, we use a threshold x for a peak value, and also use a
parameter r to define a r-radius neighborhood of a pixel. Then, any pixel whose value
is more than x and is the maximum among all pixels with a r-radius neighborhood, is
designated as a peak (transmitter location). We use z = 2 and r = 3, in our evaluations.
Note that each pixel represents a subarea; thus, a pixel designated as pixel only implies
the transmitter location at the center of the corresponding subarea. To localize the
transmission more precisely with the pixel’s subarea, we use a scheme that localizes the
transmitter within the subarea by computing a weighted average of the peak pixel’s
coordinate and the peak’s neighbor pixels’ coordinates. The weight of a pixel is the
predicted pixel value itself from the first step sen2peak. We refer to the above simple
approach for the second-step of DeepMTL as simplePeak.
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FIGURE 3.5: Our YOLOv3-cust in the second step of the DeepMTL. The two major customiza-

tion are: (i) Use only the third YOLO layer that detects small size objects (the output of

YOLOv3-cust is the bounding box predicted by the third YOLO layer and we use the center of

the bounding box as the transmitter location), and (ii) change the rectangle anchors to square
anchors.

3.4.1 Object-Detection Based Precise Localization: YOLOv3-cust

The simple hand-crafted method described in the previous subsection performs reason-
able well in most cases in our simulations. However, its key drawback is that it needs
appropriate threshold values that may vary from case to case; such thresholds can be
difficult to determine, especially since the input images (with distributions) are not
expected to be perfect as they are themselves output of a learning model. Inaccurate
threshold values can lead to false alarms and misses. Also, the previous method is not
sufficiently accurate at the sub-pixel level, where each pixel may represent a large area
such as 10m x 10m or even 100m x 100m. Thus, we propose a CNN-based learning
method that overcomes the above shortcomings. CNN has been widely used for object
detection in different areas [3, 75].

We frame this problem as an object detection task where the objective is to detect
and localize known objects in a given image. We observe that our second-step peak
detection problem is essentially an object detection problem where the “object" to detect
is a “peak". Thus, we turn the MTL problem of localizing multiple transmitters into
detecting peaks in the images output by sen2peak model. For object/peak detection,
we design YOLOv3-cust, our customized version of YOLOv3 [96]. Fig. 3.6 is a zoom-in
of localizing two close by transmitters (peaks) in Fig. 3.2(b).

Peak Detection Using YOLOv3-cust. Object detectors are usually comprised of two
parts: (i) a backbone which is usually pre-trained on ImageNet, and (ii) a front part
(head), which is used to predict bounding boxes of objects, probability of an object
present, and the object class. For the front part, object detectors are usually classified
into two categories, i.e., one-stage detectors such as the YOLO [97] series, and two-stage
detectors such as the R CNN [52] series. We choose the one-stage YOLO series because
of its computational efficiency, high popularity and available ways to customize it for
our specific context. We refer to the customized version as YOLOv3-cust, see Fig. 3.5.
Implementing a 106-layer deep neural network with a complex design from scratch is
out of scope of our work. Thus, we use a publicly available source repository [74] and
made customization on top of it. We refer to the architecture that uses sen2peak and
YOLOv3-cust in sequence as DeepMTL, our key product. In addition, we use sen2peak in
combination with the uncustomized original YOLOv3, and refer to it as DeepMTL-yolo
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FIGURE 3.6: (a) is the zoom-in of two peaks at the bottom of the Fig. 3 2 example. (c) is
the zoom-in of the two close by peaks in the middle right of the Fig. 3.2 example. (b) and (d)
shows the bounding boxes that YOLOv3-cust outputs for (a) and (c) respectively.

TABLE 3.1: Differences between the original YOLOv3 and our YOLOv3-cust.

YOLOv3

\ YOLOv3-cust

|

Has three YOLO layers at 13 x 13,
26 x 26, and 52 x 52 for detection

Only use the last 52 x 52 YOLO
layer for detection (skip the first two
YOLO layers)

Has 3 different rectangle anchors for
each YOLO layer

Has 3 square anchors

Every 10 batches, randomly chooses
a new input image dimension size

Do not randomly choose new input
dimension size

Has 80 different categories of object
class

Only has one category for the peak
class

(still change the class number to one).

Customization of YOLOv3. Overall, we incorporated four customization to YOLOvV3,
of which two are significant and the other two are relatively minor. See Table 3.1.
YOLOWV3 is designed to be a general object detector that can detect objects of various
sizes, shapes, and classes within input images of various sizes. However, in our context,
the input images are of a fixed size, with only a single class of objects which are relatively
small and semi-circular. Based on the above observations, we make changes to the
original YOLOv3 that both decrease the model complexity and improve its performance.

Customization Details. The first and second changes presented in Table 3.1 are
major changes and we elaborate them in the following paragraphs. Making prediction at
three different scales is one of the highlights of YOLOv3 and an improvement comparing
to the previous version YOLOv2 which was prone to missing at detecting small objects.
As shown in Fig. 3.5, the coarse-grain 13 x 13 YOLO layer-1 is designed for detecting
large size objects, the 26 x 26 YOLO layer-2 is designed for detecting middle-sized
objects, and the fine-grained 52 x 52 YOLO layer-3 is designed for detecting small-sized
objects. Since the peaks in our translated images are always small objects, we only
use the last 52 x 52 YOLO detection layer (and skip the first two YOLO layers). As
shown in Fig. 3.5, by “skipping" the two YOLO layers means that we do not use them
in computing the overall loss function and their outputs are not used in predicting
the bounding boxes. In our YOLOv3-cust, the only YOLO layer predicts 8112 bounding
boxes, since it has a dimension of 52 x 52 and each cell results in prediction of 3 bounding
boxes; this is in contrast to the original YOLOv3, which predicts 10647 bounding boxes
(3 x (13 x 13426 x 26 + 52 x 52) = 10647).

The anchor box is one of the most important hyperparameters of YOLOv3 that can
be tuned to improve its performance on a given dataset. The original YOLO’s anchor
boxes are 10 x 13, 16 x 30, and 33 x 23 (for the input image of size 416 x 416 pixels),
which are essentially bounding boxes of a rectangular shape. These original YOLOv3
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FI1GURE 3.7: The data processing of sen2peak’s output to get YOLOv3-cust’s input of correct
size.

anchors were designed for the Microsoft COCO [73] data set, and were chosen since
they best describe the dimensions of the real world objects in the MS COCO data set.
In our context, since the peaks are generally squares—we use the anchor boxes to be
15 x 15, 25 x 25, and 35 x 35.

Input Image for YOLOv3-cust. The first step sen2peak’s output image is 100 x 100,
while the second step YOLOv3-cust’s input is required? to be a three-channel (RGB)
image with each channel being size of 416 x 416. To feed the output of sen2peak to
YOLOv3-cust, we do the following: (i) First, we duplicate the sen2peak’s output image
to create two more copies and thus create a three-channel image of 100 x 100 size
channels; (ii) Next, we resize the 100 x 100 channels to 416 x 416 channels using the
PyTorch’s default “nearest neighbor" interpolation. See Fig. 3.7.

Output of YOLOv3-cust. YOLO treats objected detection as a regression problem.
The regression target (or “label") for an object is a five-value tuple (z,y, length,
width, class). In our case, there is only one class. x and y are real number loca-
tion coordinates of the center of the bounding box, which we use as the location of
the transmitter. Width and height determine the size and shape of the object—which
we consistently set to be 5 each to signify a 5 x 5 square. Note that the center of the
bounding box is in the continuous domain. Thus, we are able to get sub-pixel level
location of the transmitters.

3.5 Localization in the Presence of Authorized Users

Till now, we have assumed that the only transmitters present in the area are the intrud-
ers which need to be localized. In this section, we solve the more general MTL problem,
where there may be a set of authorized users in the background. This is referred to as
the multiple transmitter localization - shared spectrum (MTL-SS) problem [136].

In particular, in a shared spectrum paradigm, there are primary users and an evolv-
ing set of active secondary users transmitting in the background. Different than the
intruders whose locations are unknown, the authorized users’ locations are known and
we wish to utilize this known information to better localize the unknown intruders.
The key challenges come from the fact that the set of authorized users is not static
and changes over time as allocation requests are granted and/or active secondary users
become inactive over time. A straightforward way to handle background authorized
users is to localize every transmitter, and then remove the authorized users. However,

4YOLOv3 was developed before our work and the YOLOv3 authors set the input size of the CNN
model to 3 x 416 x 416. Although we are customizing their YOLOv3 model, we cannot change the input
size because changing it will change the convolutional layer structure, which will preclude us from using
the pre-trained weights in the YOLOv3 backbone.
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FIGURE 3.8: Overall architecture of second approach to localize 3 intruders in the presence
of 5 authorized users. The input of the SubtractNet is (c), which is stacking authorized user
matrix (a) and the sensor reading matrix (b). (d) is the output of SubtractNet, where the
transmission power of the authorized users is subtracted from the area. The details of the
SubtractNet model is in (e). (f) is the localization output after feeding (d) into DeepMTL.

(e) (f)

any localization approach is susceptible to performance degradation with the increase
in the number of transmitters to be localized. Thus, the straightforward approach of
localizing every transmitter is likely to be error-prone. Therefore, we attempt to develop
a new approach that uses DeepMTL as a building block that uses the information of the
location of the authorized uses in a way other than removing them after localizing all.
The new approach tries to subtract the received signal strength at the sensors by a value
received from the authorized users. This subtraction is done by a novel CNN model;
we refer to it as SubtractNet. Then we feed the image with subtracted powers to the
DeepMTL and get the locations of the intruders. See Fig. 3.8(c)—(d)—(f). We describe
SubtractNet in the following paragraphs.

SubtractNet Input Image. The sensor reading has two sources, one is the intruders and
the other is the authorized users. We aim to subtract the power of the authorized users
and remain the power from the intruders. So the input of the SubtractNet will contain
two kinds of information: the authorized users’ information (Fig. 3.8(a)), including both
the location and the transmitter power, and the sensor reading matrix (Fig. 3.8(b)) that
encode the power from all transmitters. To incorporate the two kinds of information, we
first encode the authorized user information into a matrix that has the same dimension
as the sensor reading matrix. Then stack the two matrices together. The combined
stacked image is nothing but a two-channel image, which can be interpreted as Red and
Green channels. The sensor reading matrix is the Red channel and the authorized user
matrix is the Green channel. There is no Blue channel. To represent the authorized
transmitter in the Green channel, we use a Gaussian peak similar to what we did in
the sen2peak for representing transmitters (Section 3.3). The difference is that in
sen2peak, all the peaks have a uniform height, whereas in SubtractNet, the height of
the peak is the power of the authorized transmitter. So the higher the power of the
authorized transmitter, the higher the peak in the Green channel. Another difference is
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that the authorized transmitters are approximated at discrete locations instead of the
continuous locations as in sen2peak.

SubtractNet Output Image. The SubtractNet’s output image is just a one-channel
images and represents the sensor readings due to the intruders only.

SubtractNet CNN Architecture. We refer to the model that subtracts the power from
the authorized users as the SubtractNet. It has a similar design philosophy with
sen2peak. SubtractNet is also an image-to-image translation neural network. Com-
pared to sen2peak, it doubled the number of layers, mainly because SubtractNet needs
a bigger receptive field than sen2peak. A bigger receptive field can let the CNN model
update sensors that are further away from the authorized user. For the loss function,
we use the L2 loss function, similar to the loss function used in Equation 3.1, merely
replacing the sen2peak with SubtractNet in Equation 3.1. The training details are
also the same as in sen2peak.

3.6 Estimating the Transmit Power of Transmitters

In this section, we extend our techniques to estimate the transmit power of the intruders;
we refer to the overall problem as Multiple Transmitter Power Estimation (MTPE). Esti-
mation of the transmit power of transmitters can be very useful in the shared spectrum
systems. In particular, estimated transmit powers of the primary users (if unknown,
as in the case of military users or legacy systems) can be used to set a “protective"
region around them—inside which secondary users can be disallowed [115]. Estimat-
ing transmit power of secondary users can also be useful. E.g., if the violation in a
shared spectrum system is based on a certain minimum threshold, then it is important
to estimate the transmit power to determine a violation. Also, the estimated transmit
power of secondary users can also be used to “circumvent" their intrusion—i.e., for the
primary users to appropriately increase their transmit power to overcome the harmful
interference from the secondary users. In general, estimating the transmission power is
beneficial to various operations such as node localization, event classification, jammer
detection [132].

There are several works that estimates the transmission power of a single transmit-
ter, often jointly with its location |65, 115, 132]. Our previous work [136] can estimate
the power of multiple transmitters. The similarity among all four of these methods is
that they are estimating the power and location jointly. In this chapter, we propose a
new method that leverages the capabilities of DeepMTL by using it as a building block.
We first localize the transmitters by DeepMTL. Then given the localized locations, esti-
mate the transmitters’ transmission power by a newly designed CNN model PredPower.
Although PredPower is designed to only estimate the power of a single transmitter, we
use it together with a machine learning-based error correction method that can miti-
gate the errors while applying PredPower to the multiple transmitter power estimation
scenario.

In this section, we develop a technique to predict the transmission powers of the
intruders. Here, for simplicity, we assume no background authorized users, though, the
techniques in this section also work in the presence of authorized users. We leverage
our accurate and robust localization solver that tolerates varying transmission power
for different transmitters (the varying transmission power needs to be in a range). We
propose an efficient approach and its overall methodology at a high-level is as follows.
And then in the next subsection we describe our PredPower model.
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1. We use DeepMTL to localize the multiple transmitters in a field.

2. We develop a CNN model PredPower to predict power of a single isolated (far
away from other intruders) intruder.

3. For other (non-isolated) intruders, we still use PredPower to predict their pow-
ers but employ a post-processing “correction" technique to account for nearby
intruders.

3.6.1 PredPower: Predicting Power of a Single Isolated TX

PredPower Input Image. Let us consider an “isolated" transmitter T'. To predict T’s
power, we start with creating a smaller-size image by cropping the original sensor read-
ings image with the area of a certain size around T'. In our evaluations in Section 3.7,
the transmitters have a transmit radius® of around 20 pixels, which is equivalent to
200 meters.% For this setting, we used an cropped area of 21 x 21 around the isolated
transmitter 7" to predict its power, with 7' is at the center of this area; also, in this
setting, we define a transmitter to be isolated if there is no other transmitter within a
20-pixel distance.” Note that the above cropping process requires the location of the
transmitter to be known, and hence, we undertake the above power-estimation process
after the localization of the transmitters using the DeepMTL model. We crop images
from the same dataset where DeepMTL is trained on.

PredPower Output Power. The output of the PredPower is a single pixel whose value
is the predicted power of the transmitter located at the center of the cropped image.
Before coming into this single pixel output design, we tried using the height or radius of
the peak from the output of sen2peak to indicate the power. But we figure out that the
height or radius of the peak is hard to accurately predict and therefore is not an accurate
indicator of the power. So we reduced the output complexity and designed the output
as a simple single pixel whose value directly represents the power of the transmitter. By
simplifying both the input side and output side, we can design and implement a novel
CNN model that can accurately predict the power of a single transmitter, as described
in the following paragraph.

PredPower CNN Architecture. We refer to our CNN model that estimates the power of
a single transmitter as PredPower. See Fig. 3.9. It has a similar design to sen2peak as
well, where it has no max-pooling layers and no fully connected layers. We do not use
the fully connected layers and design a fully-convolutional network since the usage of
fully connected layers will destroy the spatial relationships. PredPower has five CNN
layers and each CNN layer has a kernel size 5 x 5, striding 1 and padding 0. With this
setting, a pixel in the output layer has a receptive field of 21 x 21, which is exactly the
size of the input cropped image. Also note that the pixel is exactly at the location where
the transmitter is assumed to be located (recall that the transmitter is at the center

®Le., sensors beyond a distance of 20 pixels away from a transmitter  receive only negligible power
from x.

STransmission ranges of a standard 2.4 GHz and 5 GHz WiFi at default transmission powers (100
mW) are roughly 45m and 15m respectively. In our simulations (Section 3.7), we use the 600 MHz
frequency band. As the lower the signal frequency, the higher the transmission range, a transmission
range of around 200m is reasonable.

"Ideally, transmitters with a transmit radius of 20 pixels should entail defining isolated transmitters
as ones that have no other transmitters within a 40-pixel distance, and then use a 41 x41 area around the
isolated transmitter. However, in our evaluations, our chosen values yielded a more efficient technique
with sufficient accuracy.
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FIGURE 3.9: Architecture of the PredPower, a five-layer CNN model that takes in a cropped
image from the original input image and outputs the predicted power of one transmitter. The
figure displays how the data volume flows through the various convolutional layers. C stands for
Conv2d, a 2D convolutional layer, and for each Conv2d layer, the five values shown are [number
of input channel, number of output channel, kernel size, stride, padding]. B stands for batch
normalization 2d, and for each batch normalization, the value shown is [number-of-features|.

of the cropped image). We tried both batch normalization and group normalization
and found that batch normalization is better than group normalization, which is the
opposite to the sen2peak scenario. ReLU is used as the activation function.

Loss Function. The output of the last convolutional layer is technically a 3D cube,
although 1 x 1 x 1. So we flatten it in the end to get one scalar value. We use a L2 loss
function, which is formally defined as:

N

1

N Z(PredPower(Xf) — )% (3.2)
)

where N is the number of training samples, X{ is the cropped input image for the ith
sample and y; is the ground truth power for the i*" sample. PredPower(XY) is the
predicted power. We use Adam as the optimizer, and set the learning rate to 0.001 and
the number of epochs to 20, which is sufficient for the model convergence.

3.6.2 Estimating Powers of Multiple Transmitters

Our end goal is to estimate the power of multiple transmitters at the same time. When
the multiple transmitters are far away and isolated from each other, the problem reduces
to single transmitter power estimation, which PredPower handles well. The hard part
is to estimate transmit powers of multiple transmitters that are close by. In this case,
a sensor will receive an aggregated power from multiple transmitters. We assume that
blind source power separation is not viable.

Overall High-Level Approach. For each localized intruder by using DeepMTL (whether
isolated or not), we crop the 21 x 21 size area around it and feed it to PredPower,
and estimate its power. If it is actually isolated, then the predicted power is final. If
it is not isolated, then we apply a post-processing correction phase to account for the
overestimation of the powers, as described below.

Correction Method for Close by Transmitters. Let us first consider the case where there
are two close by transmitters 7p and T7. We use PredPower to estimate the power of
two transmitters and get pE) and p/1 respectively. Let us say the ground truth are py and
p1 respectively. The estimated power will most likely be higher than the ground true
power, i.e., pE) > po and pll > p1. Because PredPower can only “see" one transmitter,
and it will view two transmitters in the areas as a combined single one. Let us focus on
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Ty and assume 6g = pé —po. The intuition is that §y has some underlying patterns that
we are able to recognize. We model g as a function of some features related to T and
T1. We model §y as follows,

/

8o =00 po+ 011y dor + 019 Py + 0(1.3) - (%11 (3.3)
where dgy is the distance between Ty and T3, and the four s are the coefficients for
the four terms respectively. The first term is related to Tp itself, and the other three
terms are related to T7. We observe that the smaller the dg1, the larger the value of dg.
And the bigger the pll, the larger the value of dy. So dy1 has a negative correlation with
do while pll has a positive correlation. % is a combination of two terms to increase
the number of features. We also tried a few other features, but we decided to use only
these three features for a close by transmitter as a balance of model accuracy and model
complexity.

Equation 3.3 is for the case of one close by transmitter, we then extend the equation
to handle multiple close by transmitters in the following Equation 3.4,

’ U ’ p;
do = 0o - pg + Z(e(i,l) ~do; + 032 P +03) dT]-) (3.4)
i=1 ¢

where m is the number of close by transmitters for 7y, the transmitter of interest, do; is
the distance between Ty and close by T;, and p; is the uncorrected power predicted by

PredPower. For the i¢th close by transmitter, we introduce three terms dy;, p;, %, and
assign three coeflicients 0(; 1), 0(; 2), 0(; 3) to the three terms respectively. So for m close
by transmitters, there are 1 + 3m number of terms in the Equation 3.4.

After modeling dg, in Equation 3.5, we “correct” ps by subtracting dg from pz) to get
more an accurate estimation of the power of transmitter 7.

p(c)orrect _ p;) — (35)

Estimating the parameter 6. Equation 3.4 is essentially a linear model and we can train
it by using either linear, ridge, or LASSO regression models [90]. We perform experi-
ments using ridge regression (alpha=0.01). We set a distance threshold for a neighbor
transmitter to be classified as a close by transmitter. Note that the transmitters will
have a different number of close by transmitters. So, let us denote M as the maximum
number of close by transmitters we see in the dataset. When training the linear model
in Equation 3.4, we train a model that assumes a maximum M number of close by
transmitters, i.e., the linear model has 1 + 3M terms. The 3M terms are organized
in a group of three (i.e., three features) and the groups are sorted by distance in an
ascending order. Then, for a transmitter with a smaller than M number of close by
transmitters, let us say m, only the first 1 + 3m terms will have a meaningful value.
And for the rest 3(M — m) terms, we set the value to zero, i.e., impute missing value
with zero.

3.7 Evaluation

To evaluate the performance of our proposed techniques, we conduct large-scale sim-
ulations over two settings based on two different propagation models. In particular,
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we consider the log-distance-based propagation model and the Longley—Rice model ob-
tained from SPLAT! [79]. We evaluate various algorithms, using multiple performance
metrics as described below.

Performance Metrics. We use the following metrics 1, 2, and 3 to evaluate the
localization methods and use the 4th metric to evaluate the power estimation methods.

1. Localization Error (Ley)
2. Miss rate (M,;)

3. False Alarm rate (F,)

4. Power Error (Pe;)

Given a multi-transmitter localization solution, we first compute the Le, as the
minimum-cost matching in the bi-partite graph over the ground truth and the solution’s
locations, where the cost of each edge in the graph is the Euclidean distance between
the matched ground truth node location and the solution’s node location. We use a
simple greedy algorithm to compute the min-cost matching. The unmatched nodes are
regarded as false alarms or misses. We also put an upper threshold on the cost (L) of
an eligible match. E.g., if there are four intruders in reality, but the algorithm predicts
six intruders then it is said to incur zero misses and two false alarms, so the M, is zero
and the F; is one-third. If the algorithm predicts three intruders then it incurs one miss
and zero false alarms, so the M, is one-fourth and the F, is zero. In the plots, we stack
the miss rate and false alarm rate to reflect the overall performance.

Algorithms Compared. We implement® and compare six algorithms in two stages.
In stage one, we compare three versions of our techniques, viz., DeepMTL, DeepMTL-yolo,
and DeepMTL-peak. Recall that DeepMTL, DeepMTL-yolo, and DeepMTL-peak use
sen2peak in the first step, and YOLOv3-cust, original YOLOv3, and simplePeak re-
spectively in the second step. In the first stage of our evaluations, we will show that
DeepMTL outperforms DeepMTL-yolo and DeepMTL-peak in almost all performance met-
rics. Thus, in the second stage, we only compare DeepMTL with schemes from three
prior works, viz., SPLOT [63], DeepTxFinder [140]|, and MAP [136] and show that DeepMTL
outperforms the prior works.

Training and Testing Dataset. We consider an area of 1km x 1km, and use grid
cells (pixels) of 10m x 10m, so the grid is 100 x 100. The transmitters may be deployed
anywhere within a cell (i.e., their location is in the continuous domain), while the sensors
are deployed at the centers of the grid cells (i.e. their location is in the discrete domain).
For each instance (training or test sample), the said number of sensors and transmitters
are deployed in the field randomly. For each of the two settings (propagation models
described below), we create a 100,000 sample training dataset to train our models and
create another 20,000 sample testing dataset to evaluate the trained model.

We will evaluate the performance of various techniques for varying number of trans-
mitters/intruders and sensor density. When we vary a specific parameter, the other
parameter is set to its default value; the number of transmitters varies from 1 to 10 and
the default value is 5; the sensor density varies from 1% to 10% and the default value
is 6% (600 sensors in a 100 x 100 grid). The two default numbers 5 and 6% are chosen
because they are in the middle of their ranges. When not mentioned, the default values
are used. The transmitter power varies from 0 to 5 dBm and is randomly picked. To

8Source code at: https://github.com/caitaozhan/deeplearning-localization.
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minimize overfitting, the training dataset and testing dataset have sensors placed at
completely different locations.

We train the DeepMTL model using the 100,000 sample dataset. To train the
DeepTxFinder [140], we partition the 100,000 sample training dataset into ten datasets
based on the number of transmitters in the samples which varies from 1 to 10. These
ten datasets are used to train the ten “localization" CNN models in DeepTxFinder,
and the full dataset of 100,000 samples is used to train the DeepTxFinder model that
determines the number of transmitters. For the MAP scheme [136], we assume the avail-
ability of all required probability distributions. We note that using a simple cost model
(number of samples need to be gathered), the overall training cost for MAP is an order of
magnitude higher than DeepMTL and DeepTxFinder. Lastly, SPLOT [63] does not require
any training.

Two Propagation Models and Settings. The sensor readings (i.e. the dataset)
are simulated based on a propagation model. To demonstrate the generality of our
techniques, we consider two propagation models as described below.

Log-Distance Propagation Model and Setting. Log-Distance propagation model is a
generic model that extends Friis Free space model which is used to predict the path
loss for a wide range of environments. As per this model, the path loss (in dB) between
two points x and y at a distance d is given by: PL; = 10alogd + X, where a (we
use 3.5) is the path-loss exponent and X represents the shadowing effect that can be
represented by a zero-mean Gaussian distribution with a certain (we use 1) standard
deviation. Power received (in dBm) at point y due to a transmitter at point xz with
a transmit power of P, is thus: P, — PLg4. Power received at point y due to multiple
sources is assumed to be just an aggregate of the powers (in linear) received from each
of the sources.

SPLAT! Model and Setting. This is a complex model of wireless propagation based
on many parameters including locations, terrain data, obstructions, soil conditions,
etc. We use SPLAT! [79] to generate path-loss values. SPLAT! is an open-source
software implementing the Longley-Rice [28] Irregular Terrain With Obstruction Model
(ITWOM) model. We consider a random area in Long Island, New York of 1km x 1km
large and use the 600 MHz band to generate path losses.
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FIGURE 3.10: Cumulative probability of localization error of DeepMTL, DeepMTL-yolo and
DeepMTL-peak, for the special case of single transmitter localization with 6% sensor density.
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FIGURE 3.11: (a) Localization error and (b) miss and false alarm rates, of DeepMTL,
DeepMTL-yolo and DeepMTL-peak variants for varying number of transmitters in log-distance
dataset (propagation) model.
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FIGURE 3.12: (a) Localization error and (b) miss and false alarm rates, of DeepMTL,
DeepMTL-yolo and DeepMTL-peak variants for varying sensor density in log-distance dataset
(propagation) model.

3.7.1 DeepMTL vs. DeepMTL-yolo vs. DeepMTL-peak

In this subsection, we compare the three variants of our technique, viz., DeepMTL,
DeepMTL-yolo, and DeepMTL-peak. For simplicity, we only show plots for the log-
distance propagation model setting in this subsection (we observed similar performance
trends for the Longley-Rice propagation model t0o).

Performance Results. In Fig. 3.10, we plot the cumulative density function (CDF) of
the localization error, for the simple case of a single transmitter. We observe that
DeepMTL outperforms the other variants, as it yields a higher cumulative probability
for a lower range of errors. In addition, we evaluate the three variants for varying
number of transmitters (Fig. 3.11) and sensor density (Fig. 3.12), and evaluate the
localization error as well as the false alarm and miss rates. We observe that DeepMTL
consistently outperforms the other two variants across all plots and performance metrics.
As expected, the performance of all algorithms degrades with an increase in the number
of transmitters (in terms of false alarms and miss rates) or with a decrease in sensor
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density. In general, the localization error of DeepMTL is around 15-30% lower than the
other variants. Impressively, the total cardinality error (i.e., false alarms plus miss rates)
is fewer than 1% for the DeepMTL technique, when the sensor density is 6% or above.

When the sensor density is as low as 1%, the performance of all methods significantly
decreases. Because when the sensor density is 1% or lower, the input image will be very
sparse and contain only a few pixels. DeepMTL’s first part sen2peak has a receptive field
of 17 x 17. This area will contain an average of less than three sensors when the sensor
density is 1% (17 x 17 x 0.01 = 2.89). This number is considered too low and note that
2.89 sensors are not enough for the trilateration localization method, which needs three
sensors. Our CNN models need to function well with enough pixels that contain useful
information. So we suggest the sensor density to be at least 2% to achieve reasonable
results.

TABLE 3.2: Compare Localization Running Time (s) for 1 to 10 Number of Intruders

Intru. DeepMTL-peak DeepMTL-yolo DeepMTL MAP SPLOT DeepTxFinder

1 0.0013 0.0180 0.0180 8.78 1.53 0.0015
3 0.0014 0.0183 0.0186 15.1 1.79 0.0016
) 0.0016 0.0192 0.0189 19.3 2.06 0.0017
7 0.0018 0.0196 0.0194 241 232 0.0019
10 0.0023 0.0205 0.0206 285 2.72 0.0022

Running Time Comparison. For the running time comparison of the variants, see Table
3.2. Our hardware is an Intel i7-8700 CPU and an Nvidia RTX 2070 GPU. We ob-
serve that, as expected, DeepMTL and DeepMTL-yolo which use a sophisticated object-
detection method do incur higher latency (around 20 milliseconds) than DeepMTL-peak
(around two milliseconds). As our key performance criteria is accuracy and the run
time of DeepMTL is still quite low, we choose DeepMTL for comparison with the prior
works in §3.7.2.

Localizing Transmitters Close By. Localizing two or more transmitters close by is a hard
part of the MTL problem. Fig. 3.6(c) and (d) gives an example of when an advanced
object detection algorithm will work while a simple local maximal peak detection might
not. Fig. 3.6(c) and (d) shows DeepMTL can successfully localize two transmitters as
close as three pixels apart. When a pixel represents a 10m x 10m area, then it is 30
meters apart. If a pixel represents a smaller area, such as 1m x 1m, it has the potential
to localize two transmitters as close as three meters apart.

Two YOLO Thresholds. YOLO has two important thresholds to tune that can affect
the miss rate and false alarm rate. One is the confidence threshold (conf) and the
other is the non-maximum suppression threshold (nms). An object will be recognized as
a peak only if its confidence level is larger than conf. If two recognized peaks’ bounding
boxes have a large overlap, and their intersection of union is higher than nms, then the
two peaks will be considered as one peak. The peak with a higher confidence level keeps
while the other peak with a lower confidence level discards. A higher conf will bring a
lower false alarm rate but a higher miss rate, and a higher nms will bring a lower miss
rate but a higher false alarm rate. We pick conf = 0.8 and nms = 0.5 for DeepMTL as we
observe these values bring a good balance between false alarm rate and miss rate. In
particular, a high conf of 0.8 precludes “fake peaks" at locations with no transmitters.
Also, a low nms weakens DeepMTL’s ability to localize two close by transmitters, while a
high nms yields a high false alarm rate (by incorrectly interpreting a single transmitter
as multiple close by transmitters); thus, we chose nms of 0.5.
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FIGURE 3.13: Localization error of DeepMTL, MAP, SPLOT, and DeepTxFinder for varying num-
ber of transmitters in the log-distance dataset.
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FIGURE 3.14: Miss and false alarm rates of DeepMTL, MAP, SPLOT, and DeepTxFinder for
varying number of transmitters in the log-distance dataset.

3.7.2 DeepMTIL vs. Prior Works

In this subsection, we compare DeepMTL with SPLOT, MAP, DeepTxFinder in both log-
distance (Fig. 3.13, 3.14, 3.15) and SPLAT (Fig. 3.16, 3.17, 3.18) propagation models
and thus, datasets. We observe similar performance trends for both datasets, i.e.,
DeepMTL significantly outperforms the other approaches by a large margin (in many
cases, by more than 50% in localization errors, false alarms, and miss rates). For
all techniques, as expected, the performance is generally worse in the SPLAT dataset
compared to the log-distance dataset.

Varying Number of Transmitters. Fig. 3.13 and Fig. 3.16 show the localization error
with varying number of transmitters, in the two datasets. We see that DeepMTL has a
mean localization error of only 2 to 2.5 meters (roughly, one-fourth of the side length
of a pixel/grid cell) in the log-distance dataset and about 5 to 6 meters in the SPLAT
dataset. In comparison, the localization errors of MAP, SPLOT, DeepTxFinder are two
to three times, eight to nine times, and few tens of times respectively more than that
of DeepMTL. Fig. 3.14 and Fig. 3.17 show the miss and false alarm rates with varying
number of transmitters in the two datasets. We observe that DeepMTL’s summation of
miss and false alarm rate is only 1% even at ten transmitters in the log-distance dataset,
and about 4% for the case of SPLAT! dataset. In comparison, the summation of miss
and false alarm rates for other schemes is at least 6% and 10% respectively for the two
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FIGURE 3.15: (a) Localization error, and (b) miss and false alarm rates, of DeepMTL, MAP,
SPLOT, and DeepTxFinder for varying sensor densities in the log-distance dataset.
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FIGURE 3.16: Localization error of DeepMTL, MAP, DeepTxFinder and SPLOT for varying number
of transmitters in the SPLAT! Dataset.

datasets, when there are ten transmitters.

Varying Sensor Density. Fig. 3.15 and Fig. 3.18 plot the performance of various algo-
rithms for varying sensor density in the two datasets. For very low sensor density of 1%,
all algorithms perform badly (in comparison with higher sensor densities), but DeepMTL
still performs the best except that MAP performs best at 1% in terms of false alarm rate
and miss rate. For higher sensor densities, we observe a similar performance trend as
above—i.e., DeepMTL easily outperforms the other schemes by a large margin. For the
SPLAT! dataset at the 6% sensor density, the summation of false alarm rate and miss
rate is 2%, which is higher than the 1% summation for the log-distance dataset.

Running Times. The run time of DeepMTL (in tens of milliseconds) is orders of magnitude
faster than MAP and SPLOT (both in seconds). See Table 3.2. The DeepMTL run time is
an order of magnitude slower than DeepTxFinder (in a few milliseconds), due to the
deep YOLOv3-cust taking up over 90% of the run time.

Summary and Analysis. In summary, our approach significantly outperforms the other
approaches in all the accuracy performance metrics, as well as in terms of latency. In
particular, our approach also significantly outperforms the other CNN-based approach
DeepTxFinder. The main reason for DeepTxFinder’s inferior performance is its inability
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FIGURE 3.17: Miss and false alarm rates of DeepMTL, MAP, SPLOT, and DeepTxFinder for
varying number of transmitters in the SPLAT! Dataset.
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FIGURE 3.18: (a) Localization error, and (b) miss and false alarm rates, of DeepMTL, MAP,
SPLOT, and DeepTxFinder for varying sensor densities in the SPLAT! Dataset.

to accurately predict the number of TXs—which forms a fundamental component of
their technique. In contrast, DeepMTL can circumvent explicit pre-prediction of number
of transmitters by using a well-developed object-detection technique which works well
for multiple objects especially in our context of simple objects.

3.7.3 Transfer Learning

We demonstrate transfer learning (generalizability) by showing that the second step in
DeepMTL does not need to be retrained for different radio frequency propagation models
and terrains. In the previous experiments, the two steps of DeepMTL are both trained in
the same setting, either log-distance or SPLAT!. We do the following two combinations
to show that the second step does not need to retrain:

1. The first step is trained in the log-distance setting and the second step is trained
in the SPLAT! setting. Tested on the log-distance data.

2. The first step is trained in the SPLAT! setting and the second step is trained in
the log-distance setting. Tested on the SPLAT! data.
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FIGURE 3.19: Localization error for varying number of transmitters when the first and second
step of DeepMTL are trained on different training dataset.
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FIGURE 3.20: The miss rate and false alarm rate for varying number of transmitters when the
first and second step of DeepMTL are trained on different training dataset.

In both combinations, the second step YOLOv3-cust is trained on a different dataset
compared to the first step sen2peak. Fig. 3.19a shows that the localization error in-
creases one-third in the first combination compared to the case where both the first and
second steps are trained on log-distance dataset. Fig. 3.19b shows that the localization
error increases only five percent in the second combination compared to the case where
both the first and second steps are trained on SPLAT! dataset. The miss rate and false
alarm rate for both combinations also increase minimally, i.e. the summation of miss
rate and false alarm rate only increases around 1% in absolute value. See Fig. 3.20. This
implies that the second step of DeepMTL, YOLOv3-cust, is general and does not need to
retrain for different radio frequency propagation models and terrains. This is because
the first step sen2peak is translating sensor readings images from different geographical
areas to the same Gaussian peaks. The first step sen2peak still needs to be retrained
for different situations to translate the sensor readings to the peaks.
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FIGURE 3.21: The localization error of two approaches in the presence of five authorized users
with varying number of intruders.

3.7.4 Localize Intruders in the Presence of Authorized Users

The previous experiment setting is based on the assumption that all transmitters we
are localizing are intruders. Different than the previous setting, here, we put five autho-
rized users and they are spread out in the field, so those five will not interfere with each
other. This is the more general version of the MTL problem, where there are some autho-
rized users in the background. Fig. 3.21 shows the localization error of two approaches
localizing intruders in the presence of five authorized users with a varying number of
intruders. It is observed that the first approach, localize then remove authorized users,
has a ten to twenty percent smaller localization error compared to the second approach,
subtract authorized user power then localize. This is due to the inaccuracy of power
subtraction from the SubtractNet. Fig. 3.22 shows the miss and false alarm of two
approaches localizing intruders in the presence of five authorized users with a varying
number of intruders. It is observed that the second approach, subtract authorized TX
power then localize, is having a high false alarm when the number of intruders is three
or less. So for SubtractNet, subtracting the power of five background authorized users
from six transmitters (five out of six transmitters are authorized users, one intruder) is
relatively more difficult than subtracting the power of five authorized users from nine
users (five out of nine transmitters are authorized users, four intruders). Also statis-
tically, getting one false alarm when there are one intruder and five authorized users
is 100% false alarm rate, while getting one false alarm when there are two intruders
and five authorized users is only 50% false alarm rate (the denominator is the number
of intruders). Thus, the false alarm rate for one and two number of intruders looks to
differ a lot, but in reality, the false alarm cases do not differ a lot). When the number of
intruders is three or four, the two approaches are comparable. But when the number of
intruders is larger than four, the second approach is having a lower miss and false alarm
rate. In summary, the two approaches both have their strengths. The main advantage
for the second approach is that the sum of miss rate and false alarm rate is lower when
the number of intruders is large.

3.7.5 Power Estimation Evaluation

In this subsection, we evaluate the transmitter power estimation performance. In all
experiments, the power range is 5 dB. The power error is presented in absolute value.
A power error of 0.5 dB implies a relative power error of 10%. First, we compare the
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FIGURE 3.22: The miss and false alarm of two localization approaches in the presence of 5
authorized users with varying number of intruders.
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FIGURE 3.23: The single transmitter power estimation error of PredPower and MAP in two
propagation models, (a) Log-distance model and (b) Longley—Rice Irregular Terrain with Ob-
struction Model (SPLAT!), for varying sensor densities.

single transmitter power estimation between MAP and PredPower, and then compare the
multiple transmitter power estimation between MAP, PredPower with error correction,
and PredPower with error correction.

Figure 3.23(a) shows the performance of single transmitter power estimation in the
log-distance propagation model scenario with varying sensor density. In this case, MAP
has a 10 to 20 percent smaller power estimation error. Figure 3.23(b) shows the perfor-
mance of single transmitter power estimation in the SPLAT! model with varying sensor
density. In this case, PredPower is significantly lower in power error. So in average,
PredPower outperforms MAP in single transmitter power estimation. We can also con-
clude that for PredPower, a higher sensor density will decrease the power estimation
error. While a 2% of sensor density will lead to a higher error, a sensor density of 6%
is enough to give relatively good results.

For multiple transmitter power estimation, we compare three methods in two propa-
gation models and show that PredPower with error correction has the best performance
among the three methods. PredPower without error correction is expected to perform
the worst and it suggests that the post-processing error correction stage for PredPower
is important and works well.  Figure 3.24 shows the power estimation error of three
methods with a varying number of transmitters while the sensor density is 6%. In this
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FIGURE 3.25: The transmitter power estimation error of MAP, PredPower with and without
correction in Longley—Rice Irregular Terrain with Obstruction Model (SPLAT!) for varying
number of intruders.

figure, MAP is the best only when the number of transmitters is one (which is consis-
tent with Fig 3.23(a)). Also the number of transmitters is one is the only case when
PredPower with correction and without correction has the same performance. This is
also expected because there is no need to error correction when there is only one trans-
mitter in the area. In all other cases, we see that PredPower with error correction is
the best, PredPower without error correction is the worst, and MAP is in the middle. In
Figure 3.25, which shows experiment results running in the SPLAT! propagation model,
we see a similar pattern compared to Figure 3.24. The difference is that PredPower with
error correction is always the best and the power error is larger than the log-distance
model scenario. For example in Figure 3.24, the power estimation error for PredPower

with error correction goes up to 0.6 dB, where as in Figure 3.25, the error goes up to 1
dB.

3.7.6 Evaluation over Testbed Data

In this subsection, we show that our DeepMTL performs well in real-world collected data.
For this, we repurpose our testbed data from [136] as described below. We start with
describing our testbed data from [136].
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Testbed Data. In [136], we conducted a testbed in an outdoor parking area of 32m x
32m large.? Each grid cell has a size of 3.2m x 3.2m, with the grid size being 10 x 10.
We place a total of 18 sensors on the ground. The sensors consist of Odroid-C2 (a
single-board computer) connected to an RTL-SDR dongle and the RTL-SDR connects
to dipole antennas. The transmitters are USRP or HackRF connecting to a laptop. We
collect raw Inphase-Quadrature (I/Q) samples from the RTL-SDR at the 915 MHz ISM
band. We perform FFT on the I/Q samples with a bin size of 256 samples to get the
signal power values, and then utilize the mean and standard deviation of the power at
frequency 915 MHz reported from each of the sensors.

Transforming the Data from 10 x 10 to 100 x 100 Grid. Note that DeepMTL’s input
requires a 100 x 100 input, while the above data is over a 10 x 10 grid. Also, the sensor
density in the above data is 18%, while we desire a sensor density of around 4-6% to
have a fair comparison with our simulation based evaluations in previous subsections.
To achieve these objectives, we transform the above 10 x 10 data to a 100 x 100 grid
data in two steps as follows.

1. Increase the data granularity from 10 x 10 to 20 x 20, by dividing each cell into
2 x 2 cells; we randomly pick one of these four smaller cells to represent the original
cell (i.e., to place the sensor if it existed in the original cell). See the red-bordered
boxes in Fig. 3.26(a)-(b). We refer to the full 20 x 20 grid as a tile.

2. Now, we duplicate the 20 x 20 tile 25 times using a 5 x 5 pattern to generate a
100 x 100 grid. See Fig. 3.26(b)-(c).

The above steps effectively increase the area from the original 32m x 32m to 160m X
160m. Note that the first step above only splits each original cell into four smaller cells
without increasing the whole area size. The 100 x 100 grid will have a sensor density
of 4.5% and each grid cell represents an area of 1.6m x 1.6m.

We note that the second duplication step can introduce inaccurate sensor readings
at the tile’s “edges", due to any transmitters from adjoining tiles. To circumvent this
issue, we place transmitters only within the internal 10 x 10 cells of each 20 x 20 tile
(i.e., avoid placing a transmitter on the five-cell edge of each tile). This yields a total
of 2500 potential positions to place a transmitter in the final 100 x 100 grid. With the
above setting, we generate training and testing datasets consisting of 25,000 and 12,500
samples respectively.

Testbed Results. The performance of DeepMTL on this real world based data is shown
in Fig. 3.27. Compared to DeepTxFinder, DeepMTL is significantly better in localization
error and false alarm rate and miss rate in almost all cases, which aligns to the results
in the previous subsections based on data generated from either log-distance model or
SPLAT!. The localization error of DeepMTL in Fig. 3.27(a) is around 1.3 meters. The
error increases mildly with the increase in the number of transmitters. The localization
error in the testbed data is smaller compared to both log-distance data results (Fig. 3.13)
and SPLAT! data results (Fig. 3.16). This is because a grid cell here is representing a
smaller area. In the log-distance data, the localization error is roughly one-fourth the
side length of the grid cell. In the SPLAT! data result, the localization error is roughly
half the side length of its grid length. In the testbed data, the localization is roughly
eighty percent the side length of a grid cell. So the localization error in the testbed
data is the highest relative to the length of a grid cell it represents. The sum of false

9Dataset publicly available at: https://github.com/Wings-Lab/TPSN-2020-data
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FIGURE 3.26: (a). The original 10 x 10 testbed grid with 18 sensors (green cells) representing

a 32m x 32m area. (b). The 20 x 20 grid (a tile) obtained by replacing each original cell by

2 x 2 smaller cells; a sensor, if present in the original cell, is placed in a random cell within the

2 x 2 grid (see the green cells). (c¢). The final 100 x 100 grid obtained by duplicating the 20 x 20
tile 25 times using a 5 x 5 pattern. The final geographic area is 160m x 160m.
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FIGURE 3.27: The localization error (a), false alarm rate and miss rate (b) of DeepMTL and
DeepTxFinder in a real world collected data for varying number of intruders.

alarm rate and miss rate is 3% when the number of transmitters is five and is 5% when
the number of transmitters is ten. The results are a little bit worse than the results in
the SPLAT! data (Fig. 3.17), where the sum is 2% for five transmitters and 4% for ten
transmitters.

3.8 Related Work

Spectrum sensing is usually being realized by some distributed crowdsourced low-cost
sensors. Electrosense [94] and its follow up work Skysense [98] are typical work of spec-
trum sensing. In this crowdsourced sensing paradigm [24], sensors collect 1/Q samples
(in-phase and quadrature components of raw signals) and compute PSD (power spectral
density), which is RSS. Crowdsourced low-cost sensors do not have the capability to
collect AoA (angle of arrival) data because it requires more expensive antenna arrays.
They also do not have the capability to collect ToA (time of arrival) data because it
requires the transmission of a wide-band known sequence [35], which is impossible in
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the case of localizing (blind) intruders. Spectrum sensing platforms serve as the foun-
dation of the spectrum applications, and transmitter localization is one of the main
applications. Other applications include signal classification [93], spectrum anomaly
detection [72], sensor selection |16, 17|, spectral occupancy estimation [105], etc.

Transmitter localization. Localization of an intruder in a field using sensor obser-
vations has been widely studied, but most of the works have focused on localization of
a single intruder [23, 43]. In general, to localize multiple intruders, the main challenge
comes from the need to “separate” powers at the sensors [88], i.e., to divide the total
received power into power received from individual intruders. Blind source separation is
a very challenging problem; only very limited settings allow for known techniques using
sophisticated receivers [72, 107]. We note that (indoor) localization of a device [10]
based on signals received from multiple reference points (e.g, WiFi access points) is
a quite different problem (see [131] for a recent survey), as the signals from reference
points remain separate, and localization or tracking of multiple devices can be done inde-
pendently. Recent works on multi-target localization/tracking such as [62] are different
in the way that targets are passive, instead of active transmitters in the MTL problem.
Among other related works, [19] addresses the challenge of handling time-skewed sensors
observations in the MTL problem.

Wireless localization techniques mainly fall into two categories: geometry mapping
and fingerprinting-based. Geometry mapping mainly has two subcategories: ranging-
based such as trilateration (via RSS/RSSI, ToA, TDoA) and direction-based such as
triangulation (via AoA). Fingerprinting-based methods can use all signal physical mea-
surements including but not limited to amplitude, RSS/RSSI, ToA, TDoA, and AoA.
Whenever deep learning is used for localization, it can be considered as a fingerprinting-
based method, since it requires a training phase to survey the area of interest and a
testing phase to search for (predict) the most likely location.

Deep learning for wireless localization. Quite a few recent works have harnessed
the power of deep learning in the general topic of localization. E.g., DeepFi in [121]
designs a restricted Bolzmann machine that localizes a single target using Wiki CSI
amplitude data. DLoc in [7] uses WiFi CSI data as well. Its novelty is to transform
CSI data into an image and then uses an image-to-image translation method to localize
a single target. MonoDCell in [99] designs an LSTM that localizes a single target in
indoor environment using cellular RSS data. [35] designs a three-layer neural network
that locations a single transmitter. DeepTxFinder in [140] uses CNN to address the
same MTL problem using RSS data in this chapter.

Transmitter Power Estimation. There are several works that estimate the transmis-
sion power of a single transmitter. [132] studies the “blind" estimation of transmission
power based on received-power measurements at multiple cooperative sensor nodes us-
ing maximum likelihood estimation. Blind means there is no prior knowledge of the
location of the transmitter or transmit power. [115] propose an iterative technique that
jointly estimate the location and power of a single primary transmitter. In [65], the pri-
mary transmitter location and power is jointly estimated by a constrained optimization
method. [136] uses the maximum likelihood estimation method to estimate the power
of an isolated single transmitter and adopts an online learning method to estimate the
power of multiple close by transmitters simultaneously.



Chapter 3. DeepMTL: Deep Learning Based Multiple Transmitter Localization E;md6 0
Power Estimation

3.9 Conclusion

In this chapter, we have designed and developed some novel deep-learning based scheme
(DeepMTL) for the multiple transmitter localization (MTL) problem. We extended this
problem to localizing the intruders in the presence of authorized users and developed a
novel technique to solve it. We also developed a novel technique that can solve the mul-
tiple transmitter power estimation (MTPE) problem. Solving the general MTL and MTPE
are both achieved by utilizing our robust DeepMTL as a building block. We evaluated
all our methods extensively through data simulated from two propagation models as
well as a small-scale data collected from a real world testbed. Our developed technique
outperforms prior approaches by a significant margin in all performance metrics.
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Chapter 4

Localize Transmitter in Quantum
Sensor Networks

In this chapter, we present the first radio-frequency (RF) transmitter localization via
a quantum sensor network and a quantum-based localization method. Localization of
RF signals is a widely studied area in the past three decades. It has a great impact on
human lives as it serves as the basis of a variety of location-based services. Meanwhile,
quantum sensing is a new and interdisciplinary area that brings new opportunities to
well-established problems.

We assume distributing some quantum sensors in an area that contains a single RF
transmitter to be localized. We pose our transmitter localization problem as a quan-
tum state discrimination problem and use the positive operator-valued measurement
(POVM) as a tool for localization in a novel way. Evaluation results show that our
proposed method achieves a high localization accuracy in the discrete case and a low
localization error in the continuous case.

4.1 Introduction

Quantum sensors, being strongly sensitive to external disturbances, are able to measure
various physical phenomena with extreme sensitivity. These quantum sensors interact
with the environment and have the environment phenomenon or parameters encoded
in their state [36]. A group of distributed quantum sensors, if prepared in an ap-
propriate entangled state, can further enhance the estimation of a single continuous
parameter, improving the standard deviation of measurement by a factor of 1/ VN for
N sensors [51]. Recently, experimental physicists successfully demonstrated a reconfig-
urable entangled radio-frequency photonic sensor network [126, 127]. The experiments
establish a connection between the entanglement structure and the achievable quantum
advantage in different distributed sensing problems.

In the classical world, a network of wireless sensors is well-known to facilitate spa-
tially distributed sensing. For example, in the task of indoor RF localization, a transmit-
ter signal’s angle-of-arrival observed from different locations facilitates localization via
triangulation [128]. RF localization is a key technology for location-based services. An
improvement in RF localization will be very beneficial to an array of mobile applications
and thus generate huge economic effects. For example, getting a fine-grained location
in supermarkets, libraries, or museums will be very useful. Precise location is very im-
portant in augmented reality applications. For outdoor spectrum patrolling, we may
want to detect and locate the intruders that illegally use unauthorized spectrum [23].

Motivation for Quantum Sensors. Albeit classical sensors are omnipresent, there
are big motivations to explore quantum sensors. Quantum sensing is an emerging
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FIGURE 4.1: Overall architecture of localizing an RF transmitter in a quantum sensor network.

field that leverages the quantum properties of light and matter at atomic/subatomic
scales and has the potential to sense signals at an unprecedented level of precision.
For example, physicists in the year 2016 used squeezed quantum states to improve the
sensitivity of the Laser Interferometer Gravitational-wave Observatory (LIGO) detector
and successfully detected gravitational waves. In [127], researchers use some distributed
quantum RF-photonic sensors to estimate the amplitude and phase of a radio signal.
They showed the performance of sensing a global property of the RF wave is enhanced
by leveraging a shared multipartite entangled state produced by squeezed light. In
their experiments, the estimation variance of RF amplitude and phase both beat the
standard quantum limit by over 3 dB. The precision improvement factor of 1/v/N for N
sensors is known as reaching the Heisenberg limit. Motivated by the above, we aim to
leverage quantum sensors to perform some canonical tasks and thus open a new avenue
of research.

Quantum localization on quantum data. The canonical task we picked is RF
transmitter localization [128, 135]. We pose the localization problem as a quantum state
discrimination problem [12]|. The overall architecture is illustrated in Fig. 4.1. First, a
probe state is generated and distributed to a network of quantum sensors. Second, the
quantum sensors make interactions with the signal sent from a transmitter. The location
of the transmitter is encoded in the quantum state at the quantum sensors. Third, the
quantum states will be teleported [50] to a centralized node. Finally, at the central
node, we consider global measurement where all the teleported qubits are measured
simultaneously. The measurement outcome indicates the location of the transmitter.
Quantum measurement via positive operator-valued measure (POVM) is the core part
of quantum state discrimination. POVM is the general quantum measurement defined
as a set of positive semi-definite Hermitian matrices { E;} and each Hermitian matrix E;
is associated with the measurement outcome 4 [86]. In our context, we further associate
an outcome i to a two-dimensional location (z,y). Thus, we discriminate the quantum
state via POVM and the POVM’s output indicates the transmitter location.

Contributions. To the best of our knowledge, we are the first to explore using a
distributed set of quantum sensors to localize an RF transmitter via a quantum local-
ization approach. Our implementation is open source at !. In this context, we make
the following three contributions.

1. Mathematically models a quantum sensor and introduces the problem of trans-
mitter localization via a quantum sensor network. Section 4.2.

Thttps://github.com/caitaozhan/QuantumLocalization
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2. Design and implement POVM-Loc and its improved version POVM-Loc Pro, two
quantum localization methods using a quantum sensor network. Section 4.3.

3. Evaluate our techniques via simulations and demonstrate the effectiveness of our
developed techniques. Section 4.4.

4.2 Sensor Model, Problem, Related Work

In this section, we describe our mathematical model of a quantum sensor and formulate
the quantum transmitter localization problem. We also briefly talk about related work.

£ £
oo — (R —

Sensing Operator

FIGURE 4.2: Sensing modeled as a single parameter estimation problem. The initial state po
is used to probe an unknown parameter o embedded in the unitary operator U(«), yielding
output state p(«).

The mathematical model of quantum sensors. We first formulate quantum sens-
ing as a single parameter estimation problem, shown in Fig. 4.2. Consider a parame-
ter o embedded in a unitary operator. To sense «, one prepares an initial quantum
state pg and passes it through unitary operator U (), obtaining the output state:
pla) = U(a)poUt (). U(a) describes the interaction between a qubit and the envi-
ronment [126]

U(a) = e~C (4.1)

where G is called the generator, which is a Hermitian operator. G is determined by
the type of a. The type includes quadrature displacement [127], phase shift [76] and
qubit phase rotation, etc, [138]. In this chapter, we assume « is the phase shift, and our
generator follows the expression in |76]

G=o0./2= F 01] (4.2)

2

We further assume that the phase shift « is a function of the distance between the
transmitter and the sensor. This assumption is based on the observation that the closer
the sensor is to the transmitter, the more affected the sensor is by the transmitter. If we
can build a connection between the transmitter-receiver distance and some properties
of the RF wave, we can model the U(a) as a function of the RF wave. In this chapter,
we pick received signal strength (RSS) as the bridge that connects the « and the RF
wave, because RSS is easily accessible and is widely used in the fingerprinting-based
wireless localization field. We have

. 2m(RSS — NF)
~ MP-NF

(4.3)
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where NF' is the noise floor, M P is the maximum power a sensor can receive. We
have o € [0, 27], since the received signal strength RSS € [NF, M P]. Derived from
Equation 4.1, 4.2, 4.3, the unitary operator at the sensor can be described as

_;T(RSS—NF)

o e ' MP-NF 0
Ula) = w(RSS—NF) (4.4)
0 e’ MP—-NF

The Equation 4.4 is interpreted as follows: A quantum sensor is affected by the signal
sent by a transmitter. The transmitter’s signal triggers a phase shift in the quantum
sensor and a certain value of phase shift is a function of RSS. For the RSS model, we
use the log-distance model

RSS(d) = P(] — 10510910(6[) + X (4.5)

where P is the reference power a sensor receives at 1 meter away from the transmitter, d
is the transmitter-receiver distance, 3 is the path-loss exponent, and X is the shadowing
effect that can be represented by a zero-mean Gaussian distribution.

After modeling a single sensor, let us model multiple sensors in a distributed sensing
scenario [138]. We assume N unknown parameters at N quantum sensors respectively.
The combined unitary operator is a tensor product of N individual unitary operators,
U(a) = ®7]1V:1 U(an). To carry out sensing, one inputs N probes in a quantum state
Po and obtains the output quantum state, pn () = U(a)poUT (), where the unknown
parameters are & = {a,}Y_;, and each «,, represents an unknown parameter at the
nth sensor.

Problem Setting and Formal Definition. Consider a network of quantum sensors
distributed in a geographic area and a single transmitter active in the area. We assume
each quantum sensor holds one qubit. For simplicity, we assume all qubits are in
pure states, i.e., go = |[vo) (to| and |1s) = U(a)|tg). Assume the initial state of
the quantum sensor network is |1g). After the interaction with the environment, the
quantum state evolves to [tha) = U(e) [thg). Our problem is to determine the location of
the transmitter, given the quantum state |tpq) reported by the quantum sensor network.

Related Work. RF localization has been an active area of research for three decades.
One of the pioneering works is RADAR [10]. RADAR is a fingerprinting-based method
that has two phases. In the training phase, a person holds a receiver and travels in
an area, meanwhile RADAR records information about the radio signal as a function
of the location, i.e., constructs a received signal strength (RSS) fingerprinting map. In
the localization phase, RADAR conducts the nearest neighbor search and reports the
location of the closest signal on the fingerprinting map. The premise is that RSS infor-
mation provides a means of inferring RF location. Horus [130] improves the localization
accuracy by using a probabilistic method. The target to be localized can either be
a transmitter [58], a sensor [10], or neither both (device-free localization [89]). In this
work, the target we localize is a single transmitter. For the simultaneous localization of
multiple transmitters, see [135].

All the localization works above are classical, i.e., they use classical wireless sensors
and classical localization methods. The first localization work that brings in quantum
is [110]. Tt uses quantum amplitude encoding [108] that embeds an RSS vector of
length 2%V into the amplitudes of an N qubit quantum state. Thus, in theory, it brings
exponential enhancement in space complexity. Then, it uses a quantum fingerprinting
method based on the quantum cosine similarity algorithm [20] to match a signal to be
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FIGURE 4.3: Tlustration of Quantum state discrimination. There are two parties: Alice for
preparing and sending a quantum state, and Bob for measuring the received quantum state
from Alice.

localized to a signal recorded in the fingerprinting map. The work leverages quantum
computing and the power of quantum superposition, but they still use classical wireless
sensors that collect classical data.

4.3 Methodology and Our Approach

Quantum State Discrimination for Localization. Our methodology is to pose the
localization problem as a quantum state discrimination problem. Quantum state dis-
crimination underlies various applications in quantum information processing tasks [12].
It essentially describes the distinguishability of quantum systems in different states, and
the general process of extracting classical information from quantum states [9]. Fig. 4.3
illustrates the process of quantum state discrimination, where one party (Alice) pre-
pares a quantum state, and another party (Bob) measures the received quantum state
sent by Alice. In our context of localization, the quantum sensor network plays the
role of Alice. And a central node that performs global measurement plays the role of
Bob. The problem of discriminating among non-orthogonal quantum states boils down
to a measurement optimization problem, i.e., optimizing the POVM. Mathematically,
a POVM is a set of positive semi-definite Hermitian matrices {E;} on a Hilbert space
H that sum to the identity matrix, i.e., ), F; = I. In quantum mechanics, the POVM
element {E;} is associated with the measurement outcome 4, such that the probability
of obtaining it when making a measurement on the quantum state p is

Prob(i) = tr(pEi) = tr(|) (Y] E;) (4.6)
where t¢r is the trace operator, and p = [¢) (| for pure states. If we further as-
sociate an outcome i with a 2D location (z,y), then we have a location estimator.
For example, we can associate measurement outcomes i = {0,1,2,3} to locations

{(0,0),(0,1),(1,0),(1,1)} respectively. So a POVM outputting 1 indicates the trans-
mitter is at location (0, 1).

Optimizing the POVM is governed by some metrics, such as the minimum error
discrimination metric and the unambiguous discrimination metric [13]. Semi-definite
programming |44] is a general numerical method that can compute the optimal POVM
under various metrics. In our paper, we choose a simple but good enough method to
compute a POVM, the pretty good measurement (PGM) [57]

By =pip~Ppip (4.7)

where p; is the prior probability (we assume equal prior for simplicity) for the ith
quantum state p;, and p = ) . p;p;. We simulate p; through our U(a) model as if the
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transmitter is indeed at the location associated with ¢ and putting the initial probe
state pg in a uniform superposition state.

Challenges. If we have an appropriate POVM {E;}, the localization problem is solved.
But designing the appropriate {F;} has challenges. 1) The first challenge arrives in
localization accuracy. Consider 256 discrete locations in a 16 x 16 grid. We can design
a POVM that has 256 elements, indicating 256 output locations. But we observe that a
POVM having too many outputs will lead to lower accuracy. Because when the number
of quantum states is high, the difference between each state is relatively smaller (i.e.,
the overlap between quantum states is relatively larger). Thus being more difficult to
discriminate. So we want to avoid a POVM that has hundreds of elements. 2) The
second challenge is that if we do a global measurement on a relatively high number of
sensors, the dimension of the Hilbert space will be large. It results in POVM elements
being too costly in RAM during computation. Take an example of doing a global
measurement on 12 sensors. Each POVM element will be a complex number matrix of
dimension 2'? x 2'2. Each complex number needs 16 bytes. A POVM of 256 elements
will cost 69 GB of RAM. In reality, the physical implementation of POVM is costly as
well [129]. So we want to avoid doing a global POVM on tens of sensors. But if we
actually do have tens of quantum sensors, not being able to use all of them is a waste
of resources.

Our approach POVM-Loc. A quantum counterpart of the fingerprinting-based approach
has a training phase and a localization phase. POVM-Loc is our approach for the local-
ization phase. The names come from the critical role POVM plays in the approach.
The two challenges mentioned in the previous paragraph can be summarized as the
scalability challenge. In this section, POVM-Loc solves the scalability challenge that 1) it
has two levels of POVM and each level’s POVM needs fewer elements, and 2) utilizes all
the given quantum sensors in a novel way that each POVM does a global measurement
on fewer number of sensors. Before describing POVM-Loc, we define some concepts.

e Grid, block, and cell. We discretize the area into a grid; a cell is the smallest
unit in a grid. A block is a group of cells. For example, a block in Fig. 4.4 (a) is
comprised of 2 x 2 cells in Fig. 4.4 (b).

e Coarse level and fine level. A coarse level is a level comprised of blocks and a fine
level is a level comprised of cells. Fig. 4.4 (a) shows a coarse level with 4 blocks
and Fig. 4.4 (b) shows a fine level with 16 cells.

e Coarse-level sensors and fine-level sensors. A set of coarse-level sensors collects
quantum data p; to determine the block where the transmitter is in. A set of fine-
level sensors collects quantum data p; to determine the cell where the transmitter
is in. A set of coarse-level sensors is associated with the grid since it covers the
whole grid. A set of fine-level sensors is associated with a block since it only covers
a block. Fig. 4.4 (a) has one set of coarse-level sensors, and Fig. 4.4 (b) has four
sets of fine-level sensors that cover four blocks (in four colors). A sensor at the
borders of two blocks covers both blocks.

e Coarse-level POVM and fine-level POVM. Take {p;} with equal priors and com-
pute the POVM {E;} using PGM. During the training phase, if {p;} are collected
by a set of coarse-level sensors and the transmitter fingerprints at the center of
the blocks, we get a coarse-level POVM {cE;}. Likewise, if the {p;} are collected
by a set of fine-level sensors and the transmitter fingerprints at the center of the
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FIGURE 4.4: Illustration of POVM-Loc, a multi-level POVM scheme for transmitter localization.
The coarse level POVM determines the block (a), and the fine level POVM determines the cell

(b).

cell of the associated block, we get fine-level POVM {fE;}. Fig. 4.4 (a) shows
one coarse-level POVM and Fig. 4.4 (b) shows four fine-level POVMs. The dots
in Fig. 4.4 indicates the center of a block or cell.

The training phase. We discretize an area into a N x N grid. Without loss of
generality, we assume v/N is an integer. We divide the grid into v/N row v/N column
of blocks whose size is VN x v N. The sensors will be randomly spread out, ideally
close to uniform to better cover the whole area. For the grid, there will be a set of
coarse-level sensors associated with the grid, and the coarse-level POVM is computed
by quantum data collected from the coarse-level sensors. For each block, there will be
a small number of sensors associated with the block. Each block’s fine-level POVM is
computed by quantum data collected from the block’s associated fine-level sensors.

Algorithm 1: POVM-Loc

Input: {cE;} — one coarse-level POVM

Input: [{fE?}, {fE!}, -] — an array of fine-level POVMs
Output: location (x,y)

repeat <— 1000 ;

Jj < SenseMeasure({cFE;}, repeat) ;

block; <+ the block associated with j ;

{fE;} «+ the fine-level POVM associated with block; ;

j < SenseMeasure({ fE;}, repeat) ;

cellj < the cell associated with j ;

return the location (z,y) of cell; ;

= N, BV R

The localization phase. At a higher level, POVM-Loc localizes a transmitter from
a coarser level to a finer level. Without any prior information, a transmitter could
be anywhere in the area. The coarse-level POVM’s output can decrease the scope of
the area from the whole grid to a block. Then inside a block, a fine-level POVM’s
output will determine where the cell the transmitter is in. Algorithm 1 is the pseudo-
code of POVM-Loc. Algorithm 1 relies on Procedure 1 that repeats the process of state
preparation via a quantum sensor network and POVM measurement and returns the
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Procedure 1: SenseMeasure({E;}, K)
Input: {E;} - a POVM
Input: K — number of repetition
Output: j — the most frequent measurement outcome
count < a key-value pair dictionary;
gsensors <— a set of quantum sensors associated with the POVM {E;} ;
for k=1---K do
p < a quantum state sensed by gsensors ;
i < outcome of measuring p via POVM {E;} ;
countli] = count[i| + 1 ;
end
J < argmazy;y count[i ;

© O N o ok W N =

return j ;

POVM-Loc Pro’s return < _POVM-Loc’s return

L___g%_ j«——Border Block

FIGURE 4.5: Illustration the idea of POVM-Loc Pro. There are four blocks and one border block
in the middle. If POVM-Loc returns a cell that is at the edge of a block, do another fine-level
POVM associated with the border block.

most frequent measurement output. Procedure 1 can be viewed as the quantum sensing
protocol [36] in our localization context.

A further improvement POVM-Loc Pro. Through the two-level scheme, POVM-Loc
avoids doing a global measurement on a large number of quantum sensors and having
a large number of elements in a POVM, thus being scalable. Through evaluation, the
scheme works quite well. However, we observe that the cells at the edge of the blocks
have a higher chance of error in localization. Another observation is that the wrong
output cell of POVM-Loc is usually nearby to the correct cell, like the other side of the
border. To mitigate this kind of error, we put a new block that covers the border of
the blocks. These new blocks are called border blocks and each border block will be
associated with a set of fine-level sensors (previous fine-level sensors can be reused).
So, whenever POVM-Loc returns a cell at the border of blocks, we find the border block
where the cell is inside and do a second fine-level POVM associated with the border
block. Then the outcome of the second fine-level POVM is the final return. This
scheme of POVM-Loc plus an optional second fine-level POVM is named POVM-Loc Pro.
See Fig. 4.5.
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FIGURE 4.6: The performance of OneLevel against varying grid size.

4.4 Evaluation

In this section, first, we show the limitation of our baseline method, i.e., a single-level
POVM-based method named OneLevel. Then we evaluate the effectiveness of POVM-Loc
and POVM-Loc Pro and show that their performance is superior to OneLevel.

Performance Metrics. We use the following two metrics to evaluate the localization
methods.

1. Localization accuracy (Lacc)
2. Localization error (Ley)

Lacc is used for the discrete location setting, where we confine the location of the trans-
mitters during both the training and localization phases to the center of the cells. Lgyy
is used for the general continuous location setting, where the transmitters during the
localization phase can be anywhere (the transmitters during the training phase are still
at the cell center). Therefore, Lacc is a percentage similar to the classification accuracy,
and Le,, is the distance between the ground truth location and the method’s output
location measured in meters.

Experiment Settings. We perform experiments in different grid sizes, while the area
of a cell represents stays at 10m x 10m. Our wireless propagation model is the log-
distance model in Equation 4.5. Specifically, the reference power Py = —10dBm, and
path-loss exponent 8 = 3.5. For the zero-mean normal distribution shadowing effect,
the default standard deviation is 1. The shadowing effect is considered the source of
noise in our evaluation. In the training phase, the POVM {E;} is computed with data
that doesn’t contain noise. In the localization phase, each testing sample (a quantum
state reported from quantum sensors) contains noise. For the location of sensors, we
assume the sensors are uniformly spread out to cover the whole area better.

The limitation of OneLevel. Fig. 4.6 shows that the localization accuracy of OneLevel
decreases significantly when the grid size increases. A larger grid size leads to a larger
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Performance of POVM-Loc and Pro in 16x16 Grid
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FIGURE 4.7: The performance of POVM-Loc and POVM-Loc Pro in 16 x 16 grid against varying
noise represented by the standard deviation in the shadowing effect (see Equation 4.5).

number of quantum states being discriminated. This leads to a larger overlap between
the quantum states, making the quantum states harder to discriminate. Fig. 4.6 also
shows that by using 8 quantum sensors, the localization accuracy is higher compared
with 4 quantum sensors. This is because more quantum sensors cover the area better so
that the quantum state is able to encode more information about the environment. More
information is encoded in a larger Hilbert space, so the overlap between the quantum
states becomes smaller, making the quantum states easier to discriminate. But the high
accuracy brought by a higher number of sensors comes at a cost of higher RAM and
runtime, see Table 4.1. OneLevel’s limitation is exactly the challenges mentioned in
Section 4.3.

TABLE 4.1: Runtime (s) for OneLevel using 4 and 8 quantum sensors against varying grid size

2x2 | 4x4 | 6x6 | 8x8 | 12x12 | 16x16
4 Sensors | 1.0 | 1.1 1.2 1.4 2.0 2.6
8 Sensors | 4.8 | 9.1 | 274 | 53.1 | 113.4 | 193.8

TABLE 4.2: Runtime (s) for three methods in 16 x 16 grid

OneLevel | POVM-Loc | POVM-Loc Pro
193.8 10.3 11.3

The Improvement of POVM-Loc and POVM-Loc Pro. POVM-Loc and POVM-Loc Pro
are evaluated in a 16 x 16 grid that is divided into 4 rows and 4 columns of blocks
where each block’s size is 4 x 4. There are another 21 border blocks for POVM-Loc Pro.
There are 8 coarse-level quantum sensors and 40 fine-level quantum sensors. At the
fine level, each block will be covered by 4 fine-level sensors. A sensor at the border of
blocks can cover either block to reduce the total sensor used. POVM-Loc and POVM-Loc
Pro’s improvement of localization accuracy compared with OneLevel is major. Fig. 4.7
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CDF of Localization Error in 16x16 Grid
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FIGURE 4.8: The cumulative probability of localization of POVM-Loc, POVM-Loc Pro, OneLevel
in a continuous and 16 x 16 grid setting.

shows the localization accuracy of POVM-Loc and POVM-Loc Pro at noise equals 1 is
92.5% and 99.2% respectively. At the same noise level, the localization accuracy of
OneLevel is only 11.7% and 29.7% using 4 and 8 quantum sensors respectively. Al-
though the total number of quantum sensors deployed for POVM-Loc and POVM-Loc Pro
is a lot higher than OneLevel, localizing a single instance costs only a small number
of extra sensors. POVM-Loc uses 12 sensors (8 coarse, 4 fine) and POVM-Loc Pro uses
a couple more. Table 4.2 shows that in simulation, POVM-Loc and POVM-Loc Pro are
a lot faster than OneLevel in the 16 x 16 grid test case. POVM-Loc Pro’s additional
step costs 1 second more compared with POVM-Loc. Fig. 4.7 also shows that POVM-Loc
and POVM-Loc Pro are robust against noise, i.e., when the noise level increases, the
performance barely drops. This robustness is due to the one thousand repetitions in
Procedure 1. For the general case of transmitter location in the continuous domain, the
cumulative distribution of localization error in Fig. 4.8 shows POVM-Loc and POVM-Loc
Pro also outperforms OneLevel by a large margin. While the error under 60% cumula-
tive is the same, POVM-Loc Pro is better than POVM-Loc in the above 60% cumulative
range.

4.5 Conclusion and Future Work

We introduce POVM-Loc and an improved version POVM-Loc Pro that localizes an RF
transmitter in a sensor network effectively and efficiently. The approach utilizes quan-
tum data obtained from a quantum sensor network and performs POVM measurements
in a creative way to determine the transmitter location. For future work, we would
like to explore performing quantum measurements on a computational basis combined
with quantum machine learning. We would also like to explore more unitary opera-
tor models, as well as whether an entangled initial state’s can enhance the localization
performance.
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Chapter 5

Efficient Quantum Network
Communication using Balenced
Entanglement Swapping Trees

Quantum network communication is challenging, as the No-cloning theorem in quantum
regime makes many classical techniques inapplicable; in particular, direct transmission
of qubit states over long distances is infeasible due to unrecoverable errors. For long-
distance communication of unknown quantum states, the only viable communication
approach (assuming local operations and classical communications) is teleportation of
quantum states, which requires a prior distribution of entangled pairs (EPs) of qubits.
Establishment of EPs across remote nodes can incur significant latency due to the low
probability of success of the underlying physical processes. The focus of this chapter is
to develop efficient techniques that minimize EP generation latency. Prior works have
focused on selecting entanglement paths; in contrast, we select entanglement swapping
trees—a more accurate representation of the entanglement generation structure. Prior
work [50] developed a dynamic programming algorithm to select an optimal swapping-
tree for a single pair of nodes, under the given capacity and fidelity constraints. For
the general setting, [50] also developed an efficient iterative algorithm to compute a
set of swapping trees. However, the dynamic programming algorithm has a high time
complexity, and thus, may not be practical for real-time route finding in large networks.
In this chapter, we focus on developing an almost linear time heuristic for the QNR-SP
problem, based on the classic Dijkstra shorted path algorithm. The designed heuristic
performs close to the DP-based algorithms in our empirical studies.

5.1 Introduction

Fundamental advances in physical sciences and engineering have led to the realization of
working quantum computers (QCs) [6, 48]. However, there are significant limitations to
the capacity of individual QC [22]. Quantum networks (QNs) enable the construction
of large, robust, and more capable quantum computing platforms by connecting smaller
QCs. Quantum networks [111] also enable various important applications [29, 45, 67, 80,
106]. However, quantum network communication is challenging — e.g., physical trans-
mission of quantum states across nodes can incur irreparable communication errors, as
the No-cloning Theorem [40] proscribes making independent copies of arbitrary qubits.
At the same time, certain aspects unique to the quantum regime, such as entangled
states, enables novel mechanisms for communication. In particular, teleportation [11]
transfers quantum states with just classical communication, but requires an a priori
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establishment of entangled pairs (EPs). This chpater presents techniques for efficient
establishment of EPs in a network.

Establishment of EPs over long distances is challenging. Coordinated entanglement
swapping (e.g. DLCZ protocol [41]) using quantum repeaters can be used to establish
long-distance entanglements from short-distance entanglements. However, due to low
probability of success of the underlying physical processes (short-distance entanglements
and swappings), EP generation can incur significant latency— of the order of 10s to
100s of seconds between nodes 100s of kms away [104]. Thus, we need to develop
techniques that can facilitate fast generation of long-distance EPs.  [50] sovles the
QNR-SP Problem: Given a single (s, d) pair, select a minimum-latency swapping tree
under given constraints. In this chapter, we select near-optimal swapping trees by a
heuristic at a much lower time complexity.

To the best of our knowledge, no prior work has addressed the problem of selecting
an efficient swapping-tree for entanglement routing; they all consider selecting routing
paths (|21] selects a path using a metric based on balanced trees; see §5.3.2). Almost
all prior works have considered the “waitless” model, wherein all underlying physical
processes much succeed near-simultaneously for an EP to be generated; this model
incurs minimal decoherence, but yields very low EP generation rates. In contrast, we
consider the “waiting” protocol, wherein, at each swap operation, the earlier arriving
EP waits for a limited time for the other EP to be generated. Such an approach with
efficient swapping trees yields high entanglement rates; the potential decoherence risk
can be handled by discarding qubits that "age" beyond a certain threshold.

Our Contributions. We formulate the entanglement routing problem (§5.3) in QNs
in terms of selecting optimal swapping trees in the “waiting” protocol, under fidelity
constraints. In this context, we make the following contribution:

1. For the QNR-SP problem, the optimal algorithm in [50] has high time complexity;
we aim to improve the time-complexity of the algorithm without degrading its
empirical performance. We thus design a near-linear time heuristic for the QNR-SP
problem based on an appropriate metric which essentially restricts the solutions
to balanced swapping trees (§5.4).

5.2 QC Background

Qubit States. Quantum computation manipulates qubits analogous to how classical
computation manipulates bits. At any given time, a bit may be in one of two states,
traditionally represented by 0 and 1. A quantum state represented by a qubit is a
superposition of classical states, and is usually written as ag |0)+a; |1), where ag and o
are amplitudes represented by complex numbers and such that ||agl|?+||c ||* = 1. Here,
|0) and |1) are the standard (orthonormal) basis states; concretely, they may represent
physical properties such as spin (down/up), polarization, charge direction, etc. When
a qubit such as above is measured, it collapses to a |0) state with a probability of || ag]|?
and to a |1) state with a probability of ||a1||*. In general, a state of an n qubit system

n__ . . . . . . .
can be represented as 2 'a; |i) where “i” in |i) is i’s bit representation.

W
(3

Entanglement. Entangled pure! states are multi-qubit states that cannot be "factor-
ized" into independent single-qubit states. E.g., the 2-qubit state % |00) + % [11); this

'In this chapter, we largely deal with only pure qubit states. Entanglement of general mixed states
is defined in terms of separation of density matrices [55].
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FIGURE 5.1: (a) Teleportation of |¢) from A to B, while consuming an entangled pair (eq, e3).
(b) Entanglement swapping over the triplet of nodes (A, B,C), which results in A’s qubit
entangled with C’s qubit. This can be viewed as a teleportation of e; from node B to C.

particular system is a mazimally-entangled state. We refer to maximally-entangled pairs
of qubits as EPs. The surprising aspect of entangled states is that the combined system
continues to stay entangled, even when the individual qubits are physically separated
by large distances. This facilitates many applications, e.g., teleportation of qubit states
by local operations and classical information exchange, as described next.

Teleportation. Direct transmission of quantum data is subject to unrecoverable errors,
as classical procedures such as amplified signals or re-transmission cannot be applied
due to quantum no-cloning [40, 123].2 An alternative mechanism for quantum commu-
nication is teleportation, Fig. 5.1 (a), where a qubit ¢ from a node A is recreated in
another node B (while “destroying” the original qubit q) using only classical communi-
cation. However, this process requires that an EP already established over the nodes A
and B. Teleportation can thus be used to reliably transfer quantum information. At
a high-level, the process of teleporting an arbitrary qubit, say qubit ¢, from node A to
node B can be summarized as follows:

1. an EP pair (e, e2) is generated over A and B, with e; stored at A and es stored
at B;

2. at A, a Bell-state measurement (BSM) operation over e; and ¢ is performed, and
the 2 classical bits measurement output (cjcz) is sent to B through the classical
communication channel; at this point, the qubits ¢ and e; at A are destroyed.

3. manipulating the EP-pair qubit e at B based on received (¢, c2) changes its state
to ¢’s initial state.

Depending on the physical realization of qubits and the BSM operation, it may not
always be possible to successfully generate the 2 classical bits, as the BSM operation is
stochastic.

Entanglement Swapping (ES). Entanglement swapping is an application of tele-
portation to generate EPs over remote nodes. See Fig. 5.1 (b). If A and B share an EP
and B teleports its qubit to C', then A and C end up sharing an EP. More elaborately,
let us assume that A and B share an EP, and B and C share a separate EP. Now,
B performs a BSM on its two qubits and communicates the result to C' (teleporting
its qubit that is entangled with A to C'). When C finishes the protocol, it has a qubit
that is entangled with A’s qubit. Thus, an entanglement swapping (ES) operation can

2Quantum error correction mechanisms [38, 81] can be used to mitigate the transmission errors,
but their implementation is very challenging and is not expected to be used until later generations of
quantum networks.
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be looked up as being performed over a triplet of nodes (A, B,C) with EP available at
the two pairs of adjacent nodes (A4, B) and (B, C); it results in an EP over the pair of
nodes (4, C).

Fidelity: Decoherence and Operations-Driven. Fidelity is a measure of how
close a realized state is to the ideal. Fidelity of qubit decreases with time, due to
interaction with the environment, as well as gate operations (e.g., in ES). Time-driven
fidelity degradation is called decoherence. To bound decoherence, we limit the aggregate
time a qubit spends in a quantum memory before being consumed. With regards to
operation-driven fidelity degradation, Briegel et al. [18] give an expression that relates
the fidelity of an EP generated by ES to the fidelities of the operands, in terms of
the noise introduced by swap operations and the number of link EPs used. The order
of the swap operations (i.e., the structure of the swapping tree) does not affect the
fidelity. Thus, the operation-driven fidelity degradation of the final EP generated by a
swapping-tree T' can be controlled by limiting the number of leaves of T', assuming that
the link EPs have uniform fidelity (as in [25]).

Entanglement Purification 18, e.g.] and Quantum Error Correction [100, e.g.] have
been widely used to combat fidelity degradation. Our work focuses on optimally schedul-
ing ES operations with constraints on fidelity degradation, without purification or error
correction.

Quantum Memories. Multiple quantum memories have been recently proposed to
bring quantum networks into realization. Types of quantum memories that support
BSM measurements and gate unitary operations, and probably have a long decoherence
time can be used in quantum communications. Most of them are matter-based which
have photonic interface to produce matter-matter entanglement over two neighboring
nodes (see below). At a high-level, there are three different quantum memory plat-
forms: quantum dots, trapped atoms or ions, and colour centers in diamond. Each
has its own physical characteristics and applications. While quantum dots have the
ability to process quantum information very fast, they exhibit a very low decoherence
time among others [92, 118]. To overcome the low efficiency of single atom-photon
coupling process, atomic ensemble schemes have been proposed [41] where along with
dynamic decoupling and cooling techniques, decoherence times of a few seconds have
been achieved [37, 103, 117]. For trapped ion memories, decoherence times from sev-
eral minutes to few hours have been demonstrated [70, 119]. To further increase the
entanglement generation rate, [14] proposes a way to use a single silicon—vacancy (SiV)
colour center in diamond to perform asynchronous photonic BSM at the node located
in the middle of two adjacent quantum nodes.

5.2.1 Generating Entanglement Pairs (EPs)

As described above, teleportation, which is the only viable means of transferring quan-
tum states over long distances, requires an a priori distribution of EPs. Thus, we need
efficient mechanisms to establish EPs across remote QN nodes; this is the goal of our
work. Below, we start with describing how EPs are generated between adjacent (i.e.,
one-hop away) nodes, and then discuss how EPs across a pair of remote nodes can be
established via ESs.

Generating EP over Adjacent Nodes. The physical realization of qubits determines
the technique used for sharing EPs between adjacent nodes. The heralded entanglement
process |21, 109] to generate an atom-atom EP between adjacent nodes A and B is as
follows:
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1. Generate an entangled pair of atom and a telecom-wavelength photon at node A
and B. Qubits at each node are generally realized in an atomic form for longer-
term storage, while photonic qubits are used for transmission.

2. Once an atom-photon entanglement is locally generated at each node (at the
same time), the telecom-photons are then transmitted over an optical fiber to a
photon-photon /optical BSM device C' located in the middle of A and B so that
the photons arrive at C' at the same time.

3. The device C performs a BSM over the photons, and transmits the classical result
to A or B to complete ES.

Other entanglement generation processes have been proposed [82]; our techniques them-
selves are independent of how the link EP are generated.

Generating EP between Remote Nodes. Now, EP between non-adjacent nodes
connected by a path in the network can be established by performing a sequence of ESs
at intermediate nodes; this requires an a priori EP over each of the adjacent pairs of
nodes in the path. For example, consider a path of nodes xq, x1, x2, 23, 24, x5, With an
EP between every pair of adjacent nodes (x;,x;+1). Thus, each node z; (1 < i < 4)
has two qubits, one of which is entangled with z;_; and the other with z;1;. Nodes
xo and x5 have only one qubit each. To establish an EP between xy and x5, we can
perform a sequence of entanglement swappings (ESs) as shown in Fig. 5.2. Similarly,
the sequence of ES over the following triplets would also work: (2, z3,24), (z2, x4, z5),
(.7)0, I, $2), (330, 9, x5).

Root EPs

(X0, Xs5)

(xOI X3) (x3,x5)
/\ SN

(X0, x2) @ g .
’ (x2,%3) (x3,x4) (X4, X5)
Swapping § Link EPs ™9 Leaf nodes
Tree (x0,%1) (x1,x2)
Path ® ® ® » » ®
X0 X1 X2 X3 X4 Xsg

FIGURE 5.2: A swapping tree over a path. The leaves of the tree are the path-links, which
generate link-EPs continuously.

Swapping Trees. In general, given a path P = s ~» d from s to d, any complete
binary tree (called a swapping tree) over the ordered links in P gives a way to generate
an EP over (s,d). Each vertex in the tree corresponds to a pair of network nodes in
P, with each leaf representing a link in P. Every pair of siblings (A, B) and (B, C)
perform an ES over (A, B,C) to yield an EP over (A, C)—their parent. See Fig. 5.2.
Note that subtrees of a swapping tree execute in parallel. Different swapping trees over
the same path P can have different performance characteristics, as discussed later (see
Fig. 5.4).
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Expected Generation Latency/Rate of EPs. In general, our goal is to continuously gen-
erate EPs at some rate using a swapping tree, using continuously generated EPs at the
leaves. The stochastic nature of ES operations means that an EP at the tree’s root will
be successfully generated only after many failed attempts and hence significant latency.
We refer to this latency as the generation latency of the EP at the root, and in short,
just the generation latency of the tree. EP generation rate is the inverse of its genera-
tion latency. Whenever we refer to generation latency /rate, we implicitly mean expected
generation latency /rate.

Two Generation Protocols: WaitLess and Waiting When a swapping tree is used
to (continuously) generate EPs, there are two fundamentally different generation pro-
tocols [104, 114].

e WaitLess Protocol. In this model, all the underlying processes, including link
EP generations and atomic BSMs are synchronized. If all of them succeed then
the end-to-end EP is generated. If any of the underlying processes fail, then all
the generated EPs are discarded and the whole process starts again from scratch
(from generation of EP at links). In the WaitLess protocol, all swapping trees
over a given path P incur the same generation latency—thus, here, the goal is to
select an optimal path P (as in |25, 109]).

e Waiting Protocol. In Waiting protocol, a qubit of an EP may wait (in a quantum
memory) for its counterpart to become available so that an ES operation can
be performed. Using such storage, we preclude discarding successfully generated
EPs, and thus, reduce the overall latency in generation of a root-level EP. E.g.,
let (A, B) and (B,C) be two siblings in a swapping tree and EP for (A, B) is
generated first. Then, EP (A, B) may wait for the EP (B, C) to be successfully
generated. Once the EP (B, () is generated, the ES operation is done over the
triplet (A, B,C) to generate the EP (A,C). If the EP (A, B) waits beyond a

certain threshold, then it may decohere.

Hardware Requirement Differences. WaitLess protocols can generate EPs without
quantum memories in a relay fashion if the EP generation among adjacent nodes can be
tightly synchronized. In contrast, Waiting protocols benefit from memories with good
coherence times (§5.5).

Why Waiting’s Entanglement Generation Rate is Never Worse. The focus of
the WaitLess protocol is to avoid qubit decoherence due to storage. But it results in
very low generation rates due to a very-low probability of all the underlying processes
succeeding at the same time. However, since qubit coherence times are typically higher
than the link-generation latencies®, an appropriately designed Waiting protocol will
always yield better generation rates without significantly compromising the fidelity The
key is to bound the waiting time to limit decoherence as desired; e.g., in our protocol,
we restrict to trees with high expected fidelities (§5.3), and discard qubits that "age"
beyond a threshold. Both protocols use the same number of quantum memories (2 per
node), though the Waiting protocols will benefit from low-decoherence memories; other
hardware requirements also remain the same.

3Link generation latencies for 5 to 100km links range from about 3 to 350 milliseconds for typical
network parameters [21], while coherence times of few seconds is very realistic (coherence times of
several seconds [47, 77] have been shown long ago, and more recently, even coherence times of several
minutes [102, 113] to a few hours [120, 139] have been demonstrated.
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FI1GURE 5.3: Key notations used.

5.3 Model, Problem, and Related Works

In this section, we discuss our network model, formulate the problem addressed, and
discuss related work.

Network Model. We denote a quantum network (QN) with a graph G = (V, E), with
V ={v1,v2,...,v,} and E = {(v;,v;)} denoting the set of nodes and links respectively.
Pairs of nodes connected by a link are defined as adjacent nodes. We follow the network
model in [21] closely. Thus, each node has an atom-photon EP generator with generation
latency (t4) and probability of success (pg). Generation latency is the time between
successive attempts by the node to excite the atom to generate an atom-photon EP;
this implicitly includes the times for photon transmission, optical-BSM latency, and
classical acknowledgement. For clarity of presentation and without loss of generality,
we assume homogeneous network nodes with same parameter values. The generation
rate is the inverse of generation latency, as before. A node’s atom-photon generation
capacity /rate is its aggregate capacity, and may be split across its incident links (i.e.,
in generation of EPs over its incident links/nodes). Each node is also equipped with a
certain number of atomic memories to store the qubits of the atom-atom EPs.

A network link is a quantum channel (e.g., using an optical fiber or a free-space
link), and, in our context, is used only for establishment of link EP. In particular,
a link e = (A, B) is used to transmit telecom-photons from A and B to the photon-
photon BSM device in the middle of e. Thus, each link is composed of two half-links
with a probability of transmission success (p.) that decreases exponentially with the
link distance (see §5.5). The optical-BSM operation has a certain probability of success
(pop). To facilitate atom-atom ES operations, each network node is also equipped with
an atomic-BSM device with an operation latency (¢,) and probability of success (py).
Finally, there is an independent classical network with a transmission latency (t.); we
assume classical transmission always succeeds.

Single vs. Multiple Links Between Nodes. For our techniques multiple links between a
pair of adjacent nodes can be replaced by a single link of aggregated rate/capacity.
Hence we assume only a single link between every pair of nodes. However, distinct
multiple links between nodes have been used creatively in [109] (which refers to them as
multiple channels); thus, we will discuss multiple links further in §5.5 when we evaluate
various techniques. We note that the all-photonic protocol in [8] is essentially a more
sophisticated version of the multi-link WaitLess protocol in [109] to further minimize
memory requirements, but it uses multipartite cluster states which are challenging to
create. In either case, in terms of selection of paths/trees, the path-selection techniques
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from [109] should also apply to the all-photonic protocol with certain modifications to
account for how the cluster states are generated.

EP Generation Latency of a Swapping Tree. Given a swapping tree and EP gen-
eration rates at the leaves (network links), we wish to estimate the generation latency
of the EPs over the remote pair corresponding to the tree’s root with the Waiting pro-
tocol. Below, we develop a recursive equation. Consider a node (A, C) in the tree, with
(A, B) and (B, () as its two children. Let Typ,Tpc, and T4c be the corresponding
(expected) generation latencies of the EPs over the three pairs of nodes. Below, we de-
rive an expression for T4 in terms of T4 and Tg¢; this expression will be sufficient to
determine the expected latency of the overall swapping tree by applying the expression
iteratively. We start with an observation. If two EP arrival processes X; and X5 are
exponentially distributed with a mean inter-arrival latency of A each, then the expected
inter-arrival latency of max(X,Y) is (3/2)A. From above, if assume Typ and Tpc to
be exponentially distributed with the same expected generation latency of 7', then the
expected latency of both EPs arriving is (3/2)T. Thus, we have:

3
Tac = (§T+tb+tc)/pb, (5.1)

Remarks. We make the following remarks regarding the above expression. First, when

Tap # Tpc, we are able to only derive an upper-bound on T4 which is given by the
above equation but with T' replaced by max(Tsp,Tc).* Second, our motivation for
the exponential distribution assumption stems from the fact that the EP generation
latency at the link level is certainly exponentially distributed if we assume the under-
lying probabilistic events to have a Poisson distribution. Third, note that the resulting
distribution is not exponential. Despite this, we apply the above equation recursively to
compute the tree’s generation latency. Finally, Eqn. 5.1 is conservative in the sense that
each round of an EP generation of any subtree’s root starts from scratch (i.e., with no
link EPs from prior round) and ends with either a EP generation at the whole swapping
tree’s root or an atomic-BSM failure at the subtree’s root. We do not “pipeline” any
operations across rounds within a subtree, which may lower latency; this is beyond this
work’s scope.

5.3.1 Problem Formulation

We now formulate the central problem of selecting a single swapping trees for a single
source-destination pair.

QNR Single Path (QNR-SP) Problem. Given a quantum network and a source-
destination pair (s, d), the QNR-SP problem is to determine a single swapping tree that
maximizes the expected generation rate (i.e., minimizes the expected generation latency)
of EPs over (s,d), under the following capacity and fidelity constraints:

1. Node Constraints. For each node, the aggregate resources used by (J; T; is less
than the available resources; we formulate this formally below.

2. Fidelity Constraints. Each swapping tree in | J; T; satisfies the following: (a) Num-
ber of leaves is less than a given threshold 7;; this is to limit fidelity degradation

4The 3-over-2 formula as an upper bound has also been corroborated in a recent work [30] which
derives analytical bounds on EP latency times in more general contexts.
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due to gate operations. (b) Total memory storage time of any qubit is less® than
a given decoherence threshold T4.

Informally, the swapping-trees may also satisfy some fairness constraint across the given
source-destination pairs. A special case of the above QNR problem is to select a single
tree for a source-destination pair; we address this in the next section.

Formulating Node Constraints. Consider a swapping tree T € | J; T; over a path P. For
each link e € P, let R(e, T) be the EP rate being used by Tover the link e in P. Let
us define R, = ) 1 R(e, T), and let E(i) be the set of edges incident on . Then, the
node capacity constraint is formulated as follows.

1/t > Y Re/(pg’pe’pop) Vi€V (5.2)
ecE(i)

The above comes from the fact that to generate a single link EP over e, each end-node
of e needs to generate 1/ (pg2pe2pob) photons successfully, since each photon (from each
end-node) has a generation success of p, and a transmission success rate of p., and
the optical-BSM’s success probability over the two successfully arriving photons is pgp.
Note that 1/t, is a node’s total generation capacity. Also, the memory constraint is
that for any node ¢, the memory available in ¢ should be more than 2x + y where x is
the number of swapping trees that use ¢ as an intermediate node and y is the number
of trees that use 7 as an end node.

For homogeneous nodes and link parameters, it is easy to see that the best swapping-
tree is the balanced or almost-balanced tree over the shortest path. As described in
§5.3.2, the QNR-SP problem has been addressed before in [21, 109] under different models.
The problem of selecting multiple swapping trees for multiple source-destination pairs
is solved in [50].

5.3.2 Related Works

There have been a few works in the recent years that have addressed generating long-
distance EPs efficiently. All of these works have focused on selecting an efficient routing
path for the swapping process ([21] also selects a path, but using a metric based on
balanced trees). In addition, all except [21]| have looked at the WaitLess protocol of
generating the EPs. Recall that in the WaitLess model, selection of paths suffice, while
in the Waiting model, one needs to consider selection of efficient swapping trees with
high fidelity. Selection of optimal swapping trees is a fundamentally more challenging
problem than selection of paths—and has not been addressed before, to the best of our
knowledge. We start with discussing how the WaitLess model works.

WaitLess Approaches. The most recent works to address the above problem are [109]
and [25], both of which consider the WaitLess model. In particular, Shi and Qian [109]
design a Dijkstra-like algorithm to construct an optimal path between a pair of nodes,
when there are multiple links (channels) between adjacent nodes. Then, they use the
algorithm iteratively to select multiple paths over multiple pairs of nodes. Chakraborty

5We note that, in our context, the storage time as well as the memory coherence time are statistical
quantities due to the underlying statistical mechanisms. However, for the purposes of selecting a
swapping tree, we use a fixed decoherence threshold 74 value equal to the mean of the distribution of
the coherence time (recent work [71] computes optimal cut-offs/thresholds, and their techniques can be
used to pick 74). When simulating a selected tree for generation of EPs, we can implement coherence
time as a statistical measure.
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FIGURE 5.4: Consider the path in (a). The imbalanced tree of (b) has a higher EP generation
rate than that of the balanced tree of (¢). Here, the numbers represent the EP generation rates
over adjacent links or node-pairs.

et al. [25] design a multi-commodity-flow like LP formulation to select routing paths
for a set of source destination pairs. They map the operation-based fidelity constraint
to the path length (as in [18]), and use node copies to model the constraint in the
LP. However, they explicitly assume that the link EP generation is deterministic—i.e.,
always succeeds. Among earlier relevant works, [87] proposes a greedy solution for grid
networks, and [26] proposes virtual-path based routing in ring/grid networks.

Waiting Approach. Due to photon loss, establishing long-distance entanglement be-
tween remote nodes at L distance by direct transmission yields EP rates that decay
exponentially with L. DLCZ protocol [41, 104] broke this exponential barrier using 2*
equidistant intermediate nodes to perform entanglement-swapping operations, implic-
itly over a balanced binary tree, with a Waiting protocol; this makes the EP generation
rate decay only polynomially in L. More recently, Caleffi [21] formulated the entan-
glement generation rate on a given path between two nodes, under the more realistic
condition where the intermediate nodes in the path may not all be equidistant, but still
considered only balanced trees. Their path-based metric was then used to select the
optimal path by enumerating over the exponentially many paths in the network.

Our Approach (vs. [21]). Though [21] considers only balanced trees, its brute-force al-
gorithm is literally impossible to run for networks more than a few tens of nodes. In
our work, we observe that a path has many swapping trees, and, in general, imbalanced
trees may even be better; see Figure 5.4. Thus, [50] design a polynomial-time dynamic
programming (DP) algorithm that delivers an optimal high-fidelity swapping-tree; the
approach effectively considers all possible swapping trees, not just balanced ones (note
that, even over a single path, there are exponentially many trees). Our Balanced-Tree
Heuristic (§5.4) is closer to [21]’s work, in that both consider only balanced trees; how-
ever, we use a heuristic metric that facilitates a polynomial-time Dijkstra-like heuristic
to select the optimal path, while their recursive metric ¢ (albeit more accurate than
ours) is not amenable to an efficient (polynomial-time) search algorithm.

Other Works. In [61], Jiang et al. address a related problem; given a path with uniform
link-lengths, they give an algorithm for selecting an optimal sequence of swapping and
purification operations to produce an EP with fidelity constraints. In other recent works,
Dahlberg et al [33] design physical and link layer protocols of a quantum network stack,

5We note that their formula (Eqn. 10 in [21]) is incorrect as it either ignores the 3/2 factor or assumes
the EP generations to be synchronized across all links. In addition, their expression for "qubit age"
ignores the "waiting for ES " time completely.
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and [69] proposes a data plane protocol to generate EPs within decoherence thresholds
along a given routing path. More recently, Bugalho et al. [19] propose an algorithm to
efficiently distribute multipartite entanglement across over than two nodes.

5.4 Balanced-Tree Heuristic for QNR-SP

The DP-based algorithms presented in [50] for the QNR-SP problem have high time
complexity, and thus, may not be practical for real-time route finding in large networks.
In this section, we develop an almost-linear time heuristic for the QNR-SP problem, based
on the classic Dijkstra shortest path algorithm; the designed heuristic performs close to
the DP-based algorithms in our empirical studies.

Basic Idea. The main reason for the high-complexity of our DP-based algorithms
in [50] is that the goal of the QNR-SP problem is to select an optimal swapping tree rather
than a path. One way to circumvent this challenge efficiently while still selecting near-
optimal swapping tree, is to restrict ourselves to only “balanced” swapping trees. This
restriction allows us to think in terms of selection of paths—rather than trees—since
each path has a unique” balanced swapping tree. We can then develop an appropriate
path metric based on above, and design a Dijkstra-like algorithm to select an (s,d)
path that has the optimal metric value. We note that Caleffi [21] also proposed a path
metric based on balanced swapping trees, but their metric, though accurate, only had
a recursive formulation without a closed-form expression—and hence, was ultimately
not useful in designing an efficient algorithm. In contrast, we develop an approximate
metric with a closed-form expression, based on the "bottleneck" link, as follows.

Path Metric M. Counsider a path P = (s,z1,29,...,Zy,,d) from s to d, with links
(s,z1), (x1,22),..., (zy,,d) with given EP latencies. We define the path metric for path
P, M(P), as the EP generation latency of a balanced swapping over P, which can be
estimated as follows. Let L be the link in P with maximum generation latency. If L’s
depth (distance from the root) is the maximum in a throttled swapping tree, then we
can easily determine the accurate generation latency of the tree. However, in general, L
may not have the maximum depth, in which case we can still estimate the tree’s latency
approximately, if the tree is balanced, as follows. In balanced swapping trees, assuming
the maximum latency link L to be at the maximum depth, gives us a constant-factor
approximation of the tree’s generation latency. Thus, let us assume L to be at the
maximum depth of a balanced tree over P; this maximum depth is d = [(logy |P|)].
Let the generation latency of L be 1. If we ignore the ¢, + t. term in Eqn. 5.1 ,
then, the generation latency of a throttled swapping tree can be easily estimated to
T(%)d. The term t, + t. can also be incorporated as follows. Let T'(i) denote the
expected latency of the ancestor of L at a distance ¢ from L. Then, we get the recursive
equation: T'(i) = (3T(i — 1) + t, + t) /pp. Then, the path metric value M (P) for path
P is given by T'(d), the generation latency of the tree’s root at a distance of d from L,
and is equal to:

M(P) =T(d) = p"Tp + (0" — 1)/ (5 — 1)](ty + tc) /s

where p = 3/(2py) and d = [(log, |P|)]. The above is a (1+3/(2pp))-factor approxima-
tion latency of a balanced and throttled swapping tree over P.

"In fact, there can be multiple balanced trees over a path whose length is not a power of 2, but,
since they differ minimally in our context, we can pick a unique way of constructing a balanced tree
over a path.
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FIGURE 5.5: Qubit parameters in a swapping tree used to compute the age of a qubit g at a
leaf node I(q). Here, I(q) is the left-most leaf of the subtree T(q).

Optimal Balanced-Tree Selection. The above path-metric M() is a monotonically
increasing function over paths, i.e., if a path P; is a sub-sequence of another path P,
then M (P;) < M(P,). Thus, we can tailor the classical Dijkstra’s shortest path algo-
rithm to select a (s, d) path with minimum M (P) value, using the link’s EP generation
latencies as their weights. We refer to this algorithm as Balanced-Tree, and it can be
implemented with a time complexity of O(m + nlogn) using Fibonacci heaps, where m
is the number of edges and n is the number nodes in the network.

Incorporating Fidelity Constraints.

Definition 1. (G)iven a swapping tree, the total time spent by a qubit in a swapping
tree is the time spent from its “birth” via an atom-photon EP generation at a node till
its consumption in a swapping operation or in generation of the tree’s root EP. We
refer to this as a qubit’s age. The maximum age over all qubits in a swapping tree is
called the tree’s (expected) age. See Fig. 5.5. |

Fidelity constraints in our path-metric based setting can be handled by essentially
computing the optimal path for each path-length (number of hops in the path) up to
71, and then pick the best path among them that satisfies the fidelity constraints. This
obviously limits the number of leaves to 7; and addresses the operations-based fidelity
degradation. The above also address the decoherence/age constraint, since it is easy to
see that the age of a balanced swapping tree can be very closely approximated in terms
of the latency and the number of leaves. Now, to compute the optimal path for each
path-length, we can use a simple dynamic programming approach that run in O(mm;)
time where m is the number of edges and 7; is the constraint on number of leaves.

5.5 Evaluations

The goal of our evaluations is to compare the EP generation rates, evaluate the fidelity of
generated EPs, and validate our analytical models. We implement the various schemes
over a discrete event simulator for QNs called NetSquid [31]. The NetSquid simulator
accurately models various QN components/aspects, and in particular, we are able to
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define various QN components and simulate swapping-trees protocols by implementing
gate operations in entanglement swapping.

L 4 L 4 L L 4 -
xO X1 X9 X3 X4
@® BSM @ Manipulation » Completion

BSM Succeeds:  ---» BSM result (bits) sent for manipulation

—-— ACK to signal a subtree’s completion

BSM Fails: —— ACK to signal links to start accepting EPs

FIGURE 5.6: Swapping Tree Protocol Illustration. The shown tree is a certain hierarchy of
nodes to illustrate the BSM operation in the swapping-tree protocol. A link-layer protocol
continuously generates EPs over links (zg, z2) and (z2,24). On receiving EP on links on either
side, 21 (z3) attempts a BSM operation on the stored qubit atoms. If the BSM succeeds, 21 (x3)
sends two classical bits (solid green arrows) to x5 (z4) for desired manipulation/correction after
which x5 (z4) sends an ACK (dashed green arrows) to the other end-node xy (x2) to complete
the EP generation. If BSM at x; and x3 are both successful, then x, attempts the BSM as
above. If a BSM at say z; fails, that z; failure signals (red arrows) to all the descendant nodes
of the subtree rooted at x; so that they can start accept new EPs from the link layer protocol.
Note that here node x5 plays multiple roles and hence appears at multiple places in the figure.

Swapping Tree Protocol. Our algorithms compute swapping tree(s), and we need a
way to implement them on a network. We build our protocol on top of the link-layer
of [33], which is delegated with the task of continuously generating EPs on a link at a
desired rate (as per the swapping tree specifications). Note that a link (a,b) may be in
multiple swapping trees, and hence, may need to handle multiple link-layer requests at
the same time; we implement such link-layer requests by creating independent atom-
photon generators at a and b, with one pair of synchronized generators for each link-layer
request. As the links generate continuous EPs at desired rates, we need a protocol to
swap the EPs. Omitting the tedious bookkeeping details, the key aspect of the protocol
is that swap operation is done only when both the appropriate EP pairs have arrived.
We implement all the gate operations (including, atomic and optical BSMs) within
NetSquid to keep track of the fidelity of the qubits. On BSM success, the swapping
node transmits classical bits to the end node which manipulates its qubit, and send the
final ack to the other end node. On BSM failure, a classical ack is send to all descendant
link leaves, so that they can now start accepting new link EPs; note that in our protocol,
a link [ does not accept any more EPs, while its ancestor is waiting for its sibling’s EP.
See Fig. 5.6.
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Simulation Setting. We use a similar setting as in the recent work [109]. By de-
fault, we use a network spread over an area of 100km x 100km. We use the Waxman
model [122], used to create Internet topologies, to randomly distribute the nodes and
create links; we use the maximum link distance to be 10km. We vary the number of
nodes from 25 to 500, with 100 as the default value. We choose the two parameters in
the Waxman model to maintain the number of links to 3% of the complete graph (to
ensure an average degree of 3 to 15 nodes). For the QNR-SP problem, we pick (s, d) pairs
within a certain range of distance, with the default being 30-40 kms.

Parameter Values. We use parameter values mostly similar to the ones used in [21] cor-
responding to a single-atom based quantum memory platform, and vary some of them.
In particular, we use atomic-BSM probability of success (pp) to be 0.4 and latency ()
to be 10 p secs; in some plots, we vary pp from 0.2 to 0.6. The optical-BSM probability
of success (pop) is half of p,. We use atom-photon generation times (t4) and probability
of success (pg) as 50 usec and 0.33 respectively. Finally, we use photon transmission
success probability as e~ (2L) [21] where L is the channel attenuation length (chosen as
20km for an optical fiber) and d is the distance between the nodes. Each node’s memory
size is randomly chosen within a range of 15 to 20 units. Fidelity is modeled in Net-
Squid using two parameter values, viz., depolarization (for decoherence) and dephasing
(for operations-driven) rates. We choose a decoherence time of two seconds based on
achievable values with single-atom memory platforms [116]; note that decoherence times
of even several minutes [102, 113] to hours [120, 139] has been demonstrated for other
applicable memory platforms. Accordingly, we choose a depolarization rate of 0.01 such
that the fidelity after a second is 90%. Similarly, we choose a dephasing rate of 1000
which corresponds to a link EP fidelity of 99.5% [25].

Algorithms and Performance Metrics. To compare our techniques with prior
approaches, we implement most recently proposed approaches, viz., (i) the WaitLess-
based linear programming (LP) approach from [25] (called Delft-LP here), (ii) Q-Cast
approach from [109] which is WaitLess-based but uses multiple links and requires mem-
ories. The Waiting-based algorithm by Caleffi [21] uses an exponential-time approach,
and is thus compared only for small networks. The [87] and [26] approaches are not com-
pared as they were found to be inferior to Q-Cast. Alrorithms DP-0PT and DP-Approx
in [50] are also being compared. We compare our Balanced-Tree with all the above
mentioned algorithms largely in terms of EP generation rates and the execution times.

For all algorithm except for Q-Cast, we use only one link between adjacent nodes,
since only Q-Cast takes advantage of multiple links in a creative way. In particular, for
Q-Cast, we use W = 1,5, or 10 sub-links ([109] calls them channels) on each link, with
the node and link "capacity" divided equally among the them. We note that in Q-Cast
each node requires 2W memories (2 for each sub-link) with sufficient coherence time to
allow for the entire swapping operation over the path to be completed. The Delft-LP
approach explicitly assumes the generation of link EPs is deterministic, i.e., the value
p92p62p0b is 1, and does not model node generation rates. We address these differences
by extending their LP formulation: (i) We add a constraint on node generation rates,
and (ii) add a p,?pe(i, j)?pop factor to each link (i, j) in any path extracted from their
LP solution.

Comparison with [21] for QNR-SP Problem. Note that [21] gives only an QNR-SP
algorithm referred to as Caleffi; it takes exponential-time making it infeasible to run
for network sizes much larger than 15-20. In particular, for network sizes 17-20, it takes
several hours, and our preliminary analysis suggests that it will take of the order of
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FIGURE 5.8: QNR-SP Problem: EP Generation Rates for varying parameters.

100 years on our 100-node network. See Table 5.1. Thus, we use a small network of
15 nodes over a 25km x 25km area; we consider average node degrees of 3 or 6. See
Fig.5.7. We see that DP-0PT outperforms Caleffi by 10% on a average for the sparser
graph and minimally for the denser graph. We see that DP-Approx performs similar to
DP-0PT, while Balanced-Tree is outperformed slightly by Caleffi; however, for this
small network, since the DP-0PT and DP-Approx algorithms only take 10-100s of msecs
(Table 5.1), Balanced-Tree need not be used in practice.

QNR-SP Problem (Single Tree) Results. We start with comparing various schemes
for the QNR-SP problem, in terms of EP generation rate. We compare DP-Approx,
DP-0PT, Balanced-Tree, SP, and Q-Cast; See Fig. 5.8, where we plot the EP generation
rate for various schemes for varying number of nodes, (s,d) distance, p,, and network
link density. We observe that DP-Approx and DP-0PT perform very closely, with the
Balanced-Tree heuristic performing close to them; all these three schemes outperform
the Q-Cast schemes (for W = 5,10 sub-links) by an order of magnitude. We don’t
plot Q-Cast for W = 1 sub-links, as it performs much worse (less than 1072 EP /sec).
We note that Q-Cast’s EP rates here are much lower than the ones published in [109],
because [109] uses link EP success probability of 0.1 or more, while in our more realistic
model, the link EP success probability is pgzperob = 0.012 for the default pp value.
We reiterate that our schemes require only 2 memory units per node, while the Q-Cast
schemes requires 2IW units. The main reason for poor performance of Q-Cast (in spite
of higher memory and link synchronization) is that, in the WaitLess model, the EP
generation over a path is a very low probability event—essentially p' where p is the
link-EP success probability and [ is the path length, for the case of W =1 (the analysis
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FIGURE 5.9: The execution time comparison of various algorithms for QNR-SP algorithms.

for higher W’s is involved [109]). Finally, our proposed techniques also outperform the
SP algorithm, especially when the number of possible paths (trees) between (s, d) pair
increases. In addition, we see that performance increases with increase in pp, number
of nodes, or network link density, as expected due to availability of better trees/paths;
it also increases with decrease in (s, d) distance as fewer hops are needed.

Execution Times. We ran our simulations on an Intel i7-8700 CPU machine, and ob-
served that the WaitLess algorithms as well our Balanced-Tree and ITER-Bal heuris-
tics run in fraction of a second even for a 500-node network; thus, they can be used
in real-time. Note that since our problems depend on real-time network state (resid-
ual capacities), the algorithms must run very fast. The other algorithms (viz., DP-0PT,
DP-Approx, and ITER-DPA) can take minutes to hours on large networks, and hence, may
be impractical on large network without significant optimization and/or parallelization.
See Fig 5.9.

TABLE 5.1: Execution times of QNR-SP algorithm over small networks

Algorithm Number of nodes
10 13 15 16 18 20
Balanced-Tree 239us 360us  373us  492us  530us  H5d2us
DP-Approx dms  10ms 14.7ms 17.6ms  28ms 34ms
DP-0OPT 148ms 363ms 572ms  706ms 1s 1.7s
Caleffi [21] 92ms 4.6s 14s  26mins 3.2hrs 12.8hrs

Here, we give execution times of different algorithms especially Caleffi’s for small
networks of 10-20 nodes. See Table 5.1. We see that Balanced-Tree and DP-Approx
take fractions of a second, while DP-0PT takes upto 2 seconds. However, as expected
Caleffi’s execution time increases exponentially with increase in number of nodes —
with 20-node network takes 10+ hours. Below, we further estimate Caleffi’s execution
time for larger graphs.

5.6 Conclusion

We have designed techniques for efficient generation of EP to facilitate quantum network
communication, by selecting efficient swapping trees in a Waiting protocol. By extensive
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simulations, we demonstrated the effectiveness of our Balanced-Tree, i.e., compared to
DP-Approx, it significantly decrease the time complexity while the performance drop is

only minor.
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Chapter 6

Proposed: Transmitter Localization
in QSN with Measurement in the
Computational Basis

In Chapter 4, we pose the transmitter localization problem as a quantum state dis-
crimination problem and measure the quantum state reported by the quantum sensor
network (QSN) via a positive-operator valued measure (POVM). Although POVM is
good in theory, it is hard to implement in practice. Current hardware such as the IBM
quantum computer only support measurement in the computational basis.

For the proposed work, we continue the work of transmitter localization via quantum
state discrimination in a more practical way. In Chapter 4, our measurement is done
via a POVM constructed by equations for square root measurement [57], which is also
called pretty good measurement. The measurement problem in the context of quantum
state discrimination is an optimization problem that can be formulated as a semidefinite
programming problem (SDP) [44]. The pretty good measurement can be viewed as a
relatively good heuristic for a measurement optimization problem. However, it has two
problems:

1. Practical problem. POVM, the general measurement, is good in theory but im-
plementing it in practice using a combination of single qubit rotation gate, CNOT
gate and standard measurement gate (Fig. 6.1) is non-trivial. In the literature,
there are works [112, 129] that try to implement a single-qubit two/three element
POVM and cliam that their solutions can be generalized to arbitrary number
of qubits and arbitrary number of elements. The solution (quantum circuits) in
their work has a high circuit depth and requires ancillary qubits. Note that in
Chapter 4, a POVM of 8 qubits and up to 256 elements is needed, and using the
techniques from their work to implement the POVM we need looks daunting (at
least to me).

2. Performance problem. As its name “pretty good” suggests, it is “okayish”, but not
“very good”. SDP solvers [39] can optimally solve the measurement optimization
problem, but the solver is not scalable as the number of qubits increases. Note
that a variable in the SDP formulation is a matrix (operator) whose dimension is
the square of 2 to the power of number of qubits. Using sub-optimal pretty good
measurement implies that there are always room for improvement.

To solve first problem of practicality, we plan to use the measurement under the
standard computational basis, as in the quantum sensing protocol described in [36].
Measurement in the computation basis is the only measurement operator provided by
IBM quantum computers. See Fig. 6.1.
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FIGURE 6.1: The only measurement gate provided by the IBM Quantum Computer is a mea-
surement in the standard basis, also known as the z basis or computational basis. It can be
used to implement any kind of measurement when combined with other gates.

However, directly using the computational measurement will likely be far from the
optimal measurement, even a lot worse than the pretty good measurement. So this
leads to serious a performance problem. To solve it, we apply some quantum gates
before the standard measurement gates to transform the qubits for better serving the
computational measurement. However, the design of the quantum gates is non-trivial.
Take the example of single qubit rotational gate, it is hard to determine how large an
angle to rotate. Thus, we plan to resort to parameterized quantum circuits (also named
quantum neural networks), wherein the angles of the rotation can be learned through
the training process. Also note that we are in the noisy intermediate-scale quantum
(NISQ) era. So we plan to take noise in to consideration, which is completely ignored
in Chapter 4.

Our end-goal is to be able to run the evaluation experiments on a real IBM quantum
computer using computational basis measurement and parameterized quantum circuits.
This is a huge leap compared with classical computer simulations done in Chapter 4.
We may encounter some unknown road blocks, but the journey is going to be fun.
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Appendix A

Appendix

A.1 Deduction of Lemma 1

Use S number of sensors to determine the power for the hypothesis at location [*, such
that the hypothesis has the maximum probability. Let N (u1,0%), -+, N(us,0%) be the
PDs of the S sensors, built during the training phase, when a transmitter with power
p* is transmitting at location I*. Let x = {x1,z2, -+ ,xg} be the observation vector of
the S sensors during the localization phase. Then we predict the hypothesis at location
[* most likely has the power p* + d,, where

The deduction relies on the assumption that the path loss between a transmitter and
receiver is independent of transmit power, or unchanged. The likelihood of x, given

N = {N(u1,0%), -+, N(us,6%)} and 6, is,

S i — (1 2
P(x|N,4,) H exp{(—( : (5;; %)) )}
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