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Abstract of the Dissertation

Transmitter Localization and Optimizing Initial State in
Classical /Quantum Sensor Networks

by
Caitao Zhan
Doctor of Philosophy
IN
Computer Science
Stony Brook University
2024

In shared spectrum systems, it is important to be able to localize simultaneously
present multiple intruders (unauthorized transmitters) to effectively protect a shared
spectrum from malware-based, jamming, or other multi-device unauthorized-usage
attacks. We address the problem of localizing multiple intruders using a distributed
set of classical radio-frequency (RF) sensors in the context of a shared spectrum sys-
tem. In contrast to single transmitter localization, multiple transmitter localization
(MTL) has not been thoroughly studied. The key challenge in solving the MTL prob-
lem comes from the need to “separate” an aggregated signal received from multiple
intruders into separate signals from individual intruders. We solve the problem via a
Bayesian-based approach and a deep-learning-based approach.

After addressing multiple transmitter localization with a network of classical RF
sensors, we explore using a quantum sensor network for transmitter localization. A
quantum sensor network is a network of spatially dispersed sensors that leverage
the quantum superposition and quantum entanglement. We pose our transmitter
localization problem as a quantum state discrimination (QSD) problem and use the
positive operator-valued measurement as a tool for localization in a novel way. Then,
we address the additional challenge of the impracticality of general quantum mea-
surement by developing new schemes that replace the QSD’s measurement operators
with trained parameterized hybrid quantum-classical circuits.

Finally, we investigate problems that are unique in quantum sensors. We look
into optimizing the initial state of detector sensors in quantum sensor networks. We
consider a network of quantum sensors, where each sensor is a qubit detector that
“fires”, i.e., its state changes when an event occurs close by. The change in state
due to the firing of a detector is given by a unitary operator. The determination of
the firing sensor can be posed as a QQSD problem which incurs a probability of error
depending on the initial state and the measurement operators used. We address the
problem of determining the optimal initial state of the quantum sensor network that
incurs a minimum probability of error in determining the firing sensor. The optimal
initial state is in general an entangled state, and thus there is a demand to generate
and distribute the entangled state to a network of sensors. The last part of the thesis
is about the efficient generation and distribution of entangled pairs.
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Chapter 1

Introduction

1.1 Background and Motivation

Wireless sensor network (WSN) [135] is a network of spatially dispersed and dedi-
cated sensors that monitor and record the physical conditions of the environment and
forward the collected data to a central location [4] via wireless communication. WSN
can measure environmental conditions such as temperature, sound, humidity, wind,
light, wireless channel state information, radio spectrum, etc. A sensor network be-
comes a quantum sensor network (QSN) when the sensors leverage quantum objects
and quantum properties [66] such as quantum coherence and quantum entanglement.
Quantum sensors are extremely sensitive to physical quantities such as magnetic field,
electric field, quadrature displacement and phase shift in the optic field.

Classical sensors. WSNs have various applications [5, 58, 108|. In this thesis,
the application we focus on is spectrum surveillance and monitoring [39] for security
and threat detection. The core problem involved in this application is transmitter
localization |25, 306], and in particular, multiple transmitter localization (MTL) as
the number of transmitter present in an area could be more than one and localizing
multiple transmitters are not independent. The reason for being not independent is
that a sensor receives an aggregated power from multiple transmitters and separating
the power from different multiple sources is impractical. That an aggregated received
power is not able to separate is a big challenge for MTL.

Furthermore, in a shared spectrum paradigm, the presence of an evolving set of
authorized users (e.g., primary and secondary users) adds to the challenge. The RF
spectrum is a natural resource in great demand due to the unabated increase in mobile
(and hence, wireless) data consumption [8]. The research community has addressed
this capacity crunch via the development of shared spectrum paradigms, wherein the
spectrum is made available to unlicensed users (secondaries) as long as they do not
interfere with the transmission of licensed incumbents (primaries). The fundamental
objective behind such shared spectrum paradigms is to maximize spectrum utiliza-
tion, the viability of such systems depends on the ability to effectively guard the
shared spectrum against unauthorized usage. The current mechanisms however to
locate such unauthorized users (intruders) are human-intensive and time-consuming,



Figure 1.1: Classical sensors. Radiofrequency sensors used in this thesis. Details
see §2.6

involving the FCC enforcement bureau which detects violations via complaints and
manual investigation [130].

Motivated by the above, we seek an effective technique that can accurately localize
multiple simultaneous intruders and even in the presence of a dynamically changing
set of authorized users. Our solution assumes a network of crowdsourced sensors
wherein relatively low-cost spectrum sensors (Fig. 1.1) are available for gathering
signal strength in the form of received power. We introduce two different approaches
to the MTL problem. The first approach is a hypothesis-driven Bayesian approach, viz.
maximum a posterior approach, where wherein each hypothesis is a configuration (i.e.
a combination of (location, power) pair of the potential intruders), and the goal is
to determine the hypothesis that best explains the sensor observations. The second
approach is a deep learning-based approach. First, we encode the sensors’ observation
data into an image. Then, we frame MTL as a sequence of two steps: image-to-
image translation and object detection, each of which is solved using a trained CNN
model. The first step of image-to-image translation maps an input image representing
sensor readings to an image representing the distribution of transmitter locations,
and the second object detection step derives precise locations of transmitters from
the image of transmitter distributions. Besides the location, the transmission power
is another property of a transmitter that we wish to estimate. We introduce some
novel methods to estimate the power of multiple transmitters. We also introduce a
novel interpolation method for received signal strength.

Quantum sensors. We continue the research in transmitter localization but with
the usage of a new kind of sensor — quantum sensors. Although classical sensors are
omnipresent and work well in general, there are big motivations to explore quantum
sensors. Quantum sensing is an emerging field that leverages quantum objects and
properties at atomic/subatomic scales and has the potential to sense physical param-
eters at an unprecedented level of precision. Therefore, quantum sensing brings new
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Figure 1.2: Quantum sensor theory. Basic features of a two-state quantum sensor,
figure from [66]. |0) is the lower energy state and |1) is the higher energy state.
Quantum sensing leverages changes in the transition frequency wy (shifts of the en-
ergy level) or the transition rate (transition between energy levels) in response to an
external signal V.

Figure 1.3: Quantum sensors. (a) Fiber-coupled vapor cell for Electric field mea-
surements using Rydberg atoms, figure from [3]; (b) Reconfigurable entangled radio
frequency photonic sensor network, figure from [280].

opportunities to new and well-established problems. For example, physicists in the
year 2016 used the squeezed state of light to improve the sensitivity of the Laser In-
terferometer Gravitational-wave Observatory (LIGO) detector [243] and successfully
detected gravitational waves. In [280], researchers use some distributed quantum RF-
photonic sensors to estimate the amplitude and phase of a radio signal. They showed
the performance of sensing a global property of the RF wave is enhanced (beating
the standard quantum limit by over 3 dB) by leveraging multipartite entangled state
and squeezed light.

Our key idea is to pose the transmitter localization problem as a well-studied
quantum state discrimination (QSD) [13, 20, 21|, which allows us to develop viable
transmitter localization schemes using quantum sensors. We design two high-level
schemes to localize a transmitter in a given area deployed with a quantum sensor
network. The first scheme is based on solving an appropriate quantum state dis-
crimination problem using a global measurement, while the second scheme uses a
trained hybrid quantum-classical circuit to process the quantum sensor data. Within
the above high-level schemes, we also introduce a two-level localization scheme to
improve the performance of the basic one-level schemes. To evaluate our schemes,
we model how a quantum sensor’s state evolves due to RF signals from a transmitter
at a certain distance. Using this model, we evaluate our localization schemes and



demonstrate their effectiveness in our custom-built simulator.

Finally, we investigate two problems that are unique in quantum sensor networks.
The first problem is optimizing the initial state of detector sensors in quantum sensor
networks. We consider a network of quantum sensors, where each sensor is a qubit de-
tector that “fires”, i.e., its state changes when an event occurs close by. The change in
state due to the firing of a detector is given by a unitary operator. The determination
of the firing sensor can be posed as a QSD problem which incurs a probability of error
depending on the initial state and the measurement operator used. We address the
problem of determining the optimal initial state of the quantum sensor network that
incurs a minimum probability of error in determining the firing sensor. The optimal
initial state could be an entangled state. Thus, the second problem we look into is the
generation and distribution of entangled states. Quantum entanglement — correlation
between multiple particles — is a phenomenon that has no counterpart in the classical
world. It is the physical phenomenon that occurs when a group of particles (electrons,
photons, etc) are generated or interact in a way such that the quantum state of each
particle of the group cannot be described independently of the state of the others,
including when the particles are separated by a large distance. In our context of
QSNs, entanglement can serve as a resource to enhance the performance of the QSN.
Thus, there is a demand to generate and distribute the entangled state to a network
of sensors. This a challenging problem in the field of quantum communication. Physi-
cal transmission of quantum states across nodes can incur irreparable communication
errors, as the no-cloning theorem proscribes making independent copies of arbitrary
qubits. The establish of entanglement over long distances is challenging due to the
low probability of success of the underlying physical process (short-distance entan-
glement and swapping). We propose an efficient heuristic approach that efficiently
generates an entanglement pair in a quantum network.

1.2 Thesis Statement

This thesis strives to:

e Develop novel methods to localize transmitter(s) efficiently and accurately using
classical and quantum sensor networks.

e Optimize and generate the initial state for quantum sensor networks.

1.3 Thesis Organization

Towards the thesis statement, we make the following contributions:

e In Chapter 2, we introduce an efficient hypothesis-based Bayesian approach
MAP* for multiple transmitter localization (MTL) problem (§2.3.1); A closed-form
equation for the estimation of transmission power (§2.3.2); A novel received
signal strength interpolation method inspired by the power law distribution
(§2.3.3); Extend MAP* to accommodate the presence of authorized users (§2.4).
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In Capter 3, we introduce a deep learning-based approach DeepMTL for the MTL
problem (§3.3, §3.4); Extend DeepMTL via deep learning models to accommodate
the presence of authorized users (§3.5); A deep learning-based approach that
estimates the transmission power of multiple transmitters (§3.6).

In Chapter 4, we introduce the concept of quantum sensor networks and the
model of a quantum sensor (§4.2); In the context of quantum sensor networks,
we pose a transmitter localization problem as a quantum state discrimination
problem and introduce a novel quantum localization method POVM-Loc and
POVM-Loc Pro based on positive-operator valued measure (§4.3).

In Chapter 5, we consider a network of quantum sensors, where each sensor is a
qubit detector that "fires", its state changes when an event occurs close by. We
address the problem of determining the optimal initial global state of a network
of quantum sensors that incur a minimum probability of error in determining
the firing sensor (§5.2). We have proposed both theoretical analytical results
(85.4, §5.5) and numerical simulation results(§5.6).

In Chapter 6, we introduce an efficient heuristic algorithm Balanced-Tree for
routing an entanglement pair. The algorithm is Dijkstra-based, and the path
selection metric is a closed-form expression that models a path as a tree near
accurately (§6.4).



Chapter 2

Efficient Localization of Multiple
Intruders for Shared Spectrum
System

We address the problem of localizing multiple intruders (unauthorized transmitters)
using a distributed set of sensors in the context of a shared spectrum system. In
contrast to single transmitter localization, multiple transmitter localization (MTL) has
not been thoroughly studied. In shared spectrum systems, it is important to be able
to localize simultaneously present multiple intruders to effectively protect a shared
spectrum from malware-based, jamming, or other multi-device unauthorized-usage
attacks. The key challenge in solving the MTL problem comes from the need to
“separate” an aggregated signal received from multiple intruders into separate signals
from individual intruders. Furthermore, in a shared spectrum paradigm, presence of
an evolving set of authorized users (e.g., primary and secondary users) adds to the
challenge.

In this chapter, we propose an efficient algorithm for the MTL problem based on
the hypothesis-based Bayesian approach called MAP. Direct application of the MAP
approach to the MTL problem incurs prohibitive computational and training cost. In
this work, we develop optimized techniques based on MAP with significantly improved
computational and training costs. In particular, we develop a novel interpolation
method, ILDW, which helps minimize the training cost. We generalize our techniques
via online-learning to the setting wherein there may be a set of dynamically-changing
authorized users present in the background. We evaluate our developed techniques
on large-scale simulations as well as on small-scale indoor and outdoor testbeds. Our
experiments demonstrate that our technique outperforms the prior approaches by
significant margins, i.e., error up to 74% less in large-scale simulations and 30% less
in real-world testbeds.
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2.1 Introduction

The RF spectrum is a natural resource in great demand due to the unabated increase
in mobile (and hence, wireless) data consumption [8]. The research community has
addressed this capacity crunch via the development of shared spectrum paradigms,
wherein the spectrum is made available to unlicensed users (secondaries) as long as
they do not interfere with the transmission of licensed incumbents (primaries). E.g.,
in the recent years, the FCC has made available the CBRS band, i.e., the 3550-3700
MHz band within the 3.5 GHz band, for shared commercial use to allow other users
to utilize the otherwise low-usage band which was previously reserved for incumbent
users including US Navy radar operators.

The increasing affordability of the software-defined radio (SDR) technologies makes
the shared spectrums particularly prone to unauthorized usage or security attacks.
With easy access to SDR devices [1, 2|, it is easy for selfish users to transmit data
on the shared spectrum without any authorization and potentially causing harmful
interference to the incumbent users. Such illegal spectrum usage could also happen
as a result of infiltration of computer virus or malware on SDR devices. As the fun-
damental objective behind such shared spectrum paradigms is to maximize spectrum
utilization, the viability of such systems depends on the ability to effectively guard
the shared spectrum against unauthorized usage. The current mechanisms however to
locate such unauthorized users (intruders) are human-intensive and time-consuming,
involving FCC enforcement bureau which detects violations via complaints and man-
ual investigation [130]. Motivated by the above, we seek for an effective technique
that is able to accurately localize multiple simultaneous intruders and even in the
presence of a dynamically changing set of authorized users. In the following, we
begin by describing the multiple transmitter localization problem.

Multiple-Transmitter Localization (MTL). The transmitter localization prob-



lem has been well-studied, but most of the focus has been on localizing a single
intruder at a time. However, it is important to localize multiple transmitters simulta-
neously to effectively guard a shared spectrum system. E.g., a malware or virus-based
attachment could simultaneously cause many devices to violate spectrum allocation
rules; spectrum jamming attacks would typically involve multiple transmitters. More
importantly, a technique limited by localization of a single intruder could then be
easily circumvented by an offender by using multiple devices. The key challenge in
solving the MTL problem comes from the fact that the deployed sensor would receive
only a sum of the signals from multiple transmitters, and separating the signals may
be impossible. In addition, the other challenge that MTL in the context of shared
spectrum system poses is the presence of authorized users—e.g., the incumbent users
and the dynamic set of secondary users that have been allocated spectrum by the
manager. To the best of our knowledge, no prior localization work has considered the
presence of authorized users.

The state-of-the-art technique for the MTL problem is the recent work [130], which
essentially decomposes the MTL problem to multiple single-transmitter localization
problems based on the sensors with the highest power readings in a neighborhood.
However, the technique has a few shortcomings: (i) it implicitly assumes a propaga-
tion model, and thus, may not work effectively in areas with complex propagation
characteristics, (ii) it is not effective in the case of transmitters being located close-by,
a key challenging scenario for MTL problem, and (iii) most importantly, it can’t be
extended effectively to incorporate background authorized users, a key requirement
in the context of shared spectrum systems.

Our Approach. Transmitter localization is generally done based on observations
at deployed sensors. In particular, as in prior works [38, 130|, we assume a crowd-
sourced sensing architecture wherein relatively low-cost spectrum sensors are avail-
able for gathering signal strength in the form of received power. Our approach is
a hypothesis-driven Bayesian approach, viz. mazimum a posteriori (MAP) approach,
wherein each hypothesis is a configuration (i.e. a combination of (location, power)
pair) of the potential intruders, and the goal is to determine the hypothesis that best
explains the sensor observations. This determination is done based on the distribu-
tions (gathered during a training phase) of sensor observations for each hypothesis.
The MAP approach is known to have optimal classification accuracy, but (i) incurs pro-
hibitive computation cost—exponential in the number of potential intruders—when
applied to the MTL problem, and (ii) requires a significant amount of training cost.
The focus of our work is to address these challenges, and design a viable MAP-based
approach. In particular, using MAP as a building block, we develop an optimized
approach that runs in polynomial time with minimized training costs. We extend
our technique to work in the presence of authorized users by incorporating online
(real-time) training.

Motivation for MAP. Our motivation for using a MAP-based approach is multifold: First,
with sufficient training data, MAP is known to deliver optimal classification accuracy
for the MTL problem [77|. Second, the MAP approach doesn’t assume any propagation
model and thus works for arbitrary signal propagation characteristics. Third, it allows




us to also estimate the intruder’s transmit power, which can be very useful in some
applications, e.g., where the penalty is proportional to the extent of violation. Last
but not the least, it naturally extends to being able to handle the presence of an
evolving set of authorized users.

Training Cost and Optimization. The benefits of a MAP-based approach come at a
cost: the MAP framework requires prior training to build probability distributions
(PDs) of sensor observations for each hypothesis. However, most of the training occurs
offline, one-time, and can be automated e.g. via drones or robots. In our work, we
develop strategies to minimize the training cost; in particular, we reduce the number
of PDs to be constructed via a novel interpolation scheme suited to our unique setting,
and evaluate the impact of reduced training on the localization accuracy. We note
that the online training to incorporate the presence of authorized users is needed only
for the prevailing setting (of authorized transmitters and deployed sensors) and hence
incurs minimal cost (see §2.4).

Overall Contributions. The goal of our work is to develop an efficient technique for
accurate localization of simultaneously present multiple intruders in a shared spec-
trum system. The raw data are available at https://github.com/Wings-Lab /IPSN-
2020-data. In this context, we make the following four specific contributions.

1. Design an efficient localization algorithm (MAP*) for the MTL problem, based
on an optimal hypotheses-driven Bayesian approach. The designed approach
predicts both locations and transmit powers of the intruders, and does not
assume any propagation model and thus, works for arbitrary signal propagation
characteristics.

2. Extend the designed algorithm (MAP**) to localize effectively in the presence of
background authorized users, i.e., primaries with possibly unknown parameters
(e.g., location and transmit power) and an evolving set of secondary users.

3. Develop an effective interpolation scheme (ILDW) for our unique setting to reduce
the one-time training cost of our scheme, without impacting the localization
accuracy much.

4. Evaluate our techniques via large-scale simulations as well as over two developed
testbeds (indoor and outdoor), and demonstrate the effectiveness of our devel-
oped techniques and their superior performance compared to the best-known
techniques.

2.2 Problem, Related Work, and Methodology

In this section, we describe our model of the shared spectrum systems, formulate the
MTL problem, and discuss related work. We also describe the building block of our
approach, viz., a hypothesis-driven Bayesian localization approach (MAP).

Shared Spectrum System. In a shared spectrum paradigm, the spectrum is shared
among licensed users (primary users, PUs) and unlicensed users (secondary users,



SUs) in such a way that the transmission from secondaries does not interfere with
that of the primaries (or secondaries from a higher-tier, in case of a multi-tier shared
spectrum system [273]). In some shared spectrum systems, the location and transmit
power of the primary users may be unavailable, as is the case with military or navy
radars in the CBRS band [273|. Such sharing of spectrum is generally orchestrated
by a centralized entity called spectrum manager, such as a spectrum database in TV
white space [131] or a central spectrum access system in the CBRS 3.5GHz shared
band [106]. The spectrum manager allocates spectrum to requesting secondaries
(i.e., permission to transmit up to a certain transmit power at their location) based
on their location, spectrum demand, configurations of the primaries, other active
secondaries, prevailing channel conditions, etc. SwarmShare [113, 114] is proposed
to enable spectrum sharing between the incumbent systems and the coexisting UAV
networks in the 6GHz band. Researchers have developed NeXT [112, 115], a software-
defined wireless testbed, to support both traditional model-based control and new
data-driven control techniques in wireless research.

Authorized and Unauthorized Users. Secondary users that have been explicitly
given permission to transmit at their location are termed as authorized users; the
primary users are also considered as authorized users. Note that the set of authorized
users evolve over time, as more and more SUs are allocated spectrum and as some
SUs stop using the spectrum after a while. We can assume that each SU is allocated
spectrum for a certain duration of time, after which it stops using the spectrum. Other
users that transmit without explicit permission (for that given time) are referred to
as unauthorized users or intruders.

Problem Setting and Formal Definition. Consider a geographic area with a
shared spectrum. Without loss of generality, we assume a single channel throughout
this paper (multiple channels are handled similarly). For localization of unauthorized
users, we assume available crowdsourced sensors that can observe the received signal
in the channel of interest, and compute (total) received signal strength indicator
(RSSI)!. These sensors, being crowdsourced, may be at different locations at different
times. At any given instant, the shared spectrum area has some licensed primary
users and some active secondary users; the PU configurations may not be known as
can be the case for military users. The centralized spectrum manager is aware of the
set of active SUs at any time, as each SU request is granted for a certain period of
time. In addition to the authorized users, there may be a set of intruders present in
the area with each intruder in a certain “configuration” (see §2.2.2).

The MTL problem is to determine the set of intruders with their configurations at
each instant of time, based on the set of sensor observations at that instant. See Figure
2.1. The basic MTL problem assumes no other transmissions (of authorized users) in
the background. The more general MTL problem, where there may be an evolving
set of authorized users in the background, is referred to as the MTL-SS problem. We
address the MTL problem in §2.3, and then address the more general MTL-SS problem
in §2.4.

'We do not use angle-of-arrival (AoA) measurements [313| as they require additional and complex
RF hardware.
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2.2.1 Related Work

Localization of an intruder in a field using sensor observations has been widely stud-
ied, but most of the works have focused on localization of a single intruder [39, 78§].
In general, to localize multiple intruders, the main challenge comes from the need to
“separate” powers at the sensors [203], i.e., to divide the total received power into
power received from individual intruders. Blind source separation is a very challeng-
ing problem; only very limited settings allow for known techniques [153, 228| using
sophisticated receivers. In our context of hypotheses-driven approach, the challenge
of source separation manifests in terms of a large number of hypotheses, a challenge
addressed in §2.3. We note that (indoor) localization of a device [14] based on signals
received from multiple reference points (e.g, WiFi access points) is a quite different
problem (see [300] for a recent survey), as the signals from reference points remain
separate, and localization or tracking of multiple devices can be done independently.
Recent works on multi-target localization/tracking are different in the way that tar-
gets are passive |61, 99, 128|, instead of active transmitters in this work.

In absence of blind separation methods, to the best of our knowledge, only a few
works have addressed multiple intruder(s) localization, and none of these consider it in
the presence of a dynamically changing set of authorized transmitters. In particular,
(i) [130] decomposes the multi-transmitter localization problem to multiple single-
transmitter localization problems based on the sensors with the highest of readings in
a neighbohood, (ii) [193| works by clustering the sensors with readings above a certain
threshold and then localizing intruders at the centers of these clusters, (iii) [194]
uses an EM-based approach. The techniques of [130, 194] assume a propagation
model, while that of [193, 194| require a priori knowledge of the number of intruders
present. We have compared our approach with [130, 193| in §2.5, while [194] has
a high computational cost and has also been shown to be inferior in performance
to [130, 193] even for a small number of intruders. Other related works include (i) [91]
that addresses the challenge of handling time-skewed sensor observations in the MTL
problem, and (ii) [23| that addresses the sensor selection optimization problem for
our proposed hypotheses-based localization approach.

Bayesian methods are a subset of statistics in which probability expresses a degree
of belief in an event. Bayes’ theorem provides a way to update the probability of a
hypothesis as more evidence or information becomes available. It combines prior
knowledge with new evidence to form a posterior probablity. Bayesian methods are
used to calculate the parameters for movement time distribution models [259] and to
predict the distribution and the mean of pointing movement time [317].

2.2.2 MAP: Bayesian Approach for Localization

We localize intruders based on observations from a set of sensors. Each sensor com-
municates its observation to a centralized entity, the spectrum manager, which runs
an appropriate localization algorithm to localize the intruders. In particular, we use
a hypotheses-driven Bayesian approach, as described below, where intruders are lo-
calized by determining the most likely prevailing hypothesis; this is done based on
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joint probability distributions of the sensors’ observations (constructed during a pri-
ori training). Below, we formalize the above concepts, and the basic localization
approach.

Observation; Observation Vector. Throughout this paper, we use the term ob-
servation at an individual sensor to mean the received power over a time window
of certain duration, in the frequency channel of interest (we assume only one chan-
nel). In particular, received power is computed from the FFT of the I/Q samples
in the time window [39]. We use the term observation vector x to denote a vector
of observations from a given set of distributed sensors, with each vector dimension
corresponding to a unique sensor.

Hypotheses. Let Hy, Hy, ..., H,, be the set of all hy-
potheses, where each hypothesis H; represents a “con-
figuration” of potential intruders. In this chapter, we
largely assume an intruder’s configuration to be com-
prised of just its location and transmit power, but the
concept of configuration is quite general and could in- (2, p2)
clude any attributes (e.g., height, antenna direction,
etc.) that affect how its transmitted signal is received
at other locations. Moreover, for simplicity, we assume
that each intruder transmits at a fixed power (which
may be different for different intruders). Thus, in our (5, P3)
context, a configuration is simply the set of (location,

transmit power) pairs of potential intruders. We as- Figure 2.2: Illustration of a
sume a bounded number of intruders. We use Hj to hypothesis formed of three
represent the hypothesis with no intruders. See Fig- transmitters.

ure 2.2.

If there is only one intruder, then each hypothesis represents the location and
transmit power combination of the intruder, and determining the hypothesis is equiv-
alent to localizing the intruder and estimating its power. If we allow multiple intruders
at a time, the number of possible hypotheses can be exponential in the number of
intruders; we will address this challenge in §2.3.

(llv pl)

Inputs. For a given set of sensors deployed over an area, we assume the following
available inputs, obtained via a priori training, data gathering and/or analysis:

e Prior probabilities of the hypotheses, i.e. P(H;), for each hypothesis H;. Prior
probabilities come from known knowledge about the area, intruder’s behavior,
etc., and can be assumed to be uniform in absence of better knowledge.

e Joint probability distribution (JPD) of sensors’ observations for each hypothesis.
More formally, for each hypothesis H;, we assume P(x|H;) to be known for each
observation x for the set of deployed sensors. The JPDs can be obtained from
prior training, a combination of training and interpolation (§2.3.3), or even by
assuming a propagation model to remove the training cost completely.

Maximum a Posteriori (MAP) Localization Algorithm. We use Bayes rule to
compute the likelihood probability of each hypothesis, from a given observation vector
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_ P(x|H;)P(H;)
PULR) = S~ b i) PU,) (2.1

We select the hypothesis that has the highest probability, for given observations of
a set of sensors. That is, the MAP Algorithm returns the hypotheses based on the
following equation:

arg migbx P(H;|x) (2.2)

The above MAP algorithm to determine the prevailing hypothesis is known to be op-
timal |77], i.e., it yields the minimum probability of (misclassification) error. The
above hypothesis-based approach to localization works for arbitrary signal propaga-
tion characteristics, and in particular, obviates the need to assume a propagation
model. However, the above MAP algorithm does incur a one-time training cost to
construct the JPDs.

2.3 MAP* Optimizing MAP for MTL

The MAP algorithm of §2.2.2 can be directly applied to localize multiple intruders with
optimal localization accuracy. However, MAP incurs prohibitive computational costs,
especially for a large number of potential intruders. In particular, note that if there are
L potential locations, up to T potential intruders, and W possible discrete transmit-
power levels, then the hypotheses-driven MAP algorithm needs to consider (LW )T
hypotheses—making its runtime complexity exponential in the number of potential
intruders, and thus, making it impractical to localize even a moderate number of
intruders present simultaneously. In addition, MAP also incurs a high training cost.
In the following subsections, we develop an optimized algorithm called MAP* based
on MAP but with significantly improved computational and training cost. We start
with optimizing the computation cost in §2.3.1. In the following subsection §2.3.2,
we derive a closed-form expression to efficiently estimate the intruder’s power in
the continuous domain. Finally, we discuss optimizing the training cost via a novel
interpolation scheme ILDW.

2.3.1 Optimizing Computation Time

Basic Idea. Note that the MAP’s exponential time complexity is due to the exponen-
tial number of combinations of locations and /or powers of the potential intruders. To
motivate our proposed optimized approach, consider a simple example of 2 intruders
with fixed power p in a large area. Assume that the “transmission radius” r for power
p is much smaller than the area; we define the transmission radius as the range till
which the received signal is more than a certain noise floor. The key observation is
that if the intruders are far away (isolated) from each other (specifically, more than
2r distance away), then they could be localized independently. If the intruders are
closer, then there is a need to separate aggregated signal at some of the sensors and
hence we must apply the standard MAP algorithm within that “subarea”; however, since
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each such subarea is small (a disk of 2r radius around each possible location), the
computation time is reduced significantly. However, since we do not a priori know
the configurations of intruders, we need to consider appropriate possibilities.

In essence, our optimized approach is a divide-and-conquer approach, consisting
of a sequence of two procedures each of which is executed iteratively. The first proce-
dure focuses on localizing “isolated” intruders (if any) independently, while the second
procedure localizes the remaining intruders—by considering all possible subareas as
suggested above. The challenge lies in modifying the MAP algorithm for each itera-
tion of the above procedures—as the hypotheses to consider across iterations of the
procedures are not disjoint. We now describe each of the procedures.

Procedure 1. Localize Isolated Intruders. Informally, in this procedure, we
localize intruders that are sufficiently separated from other intruders. In other words,
we localize intruders x that are surrounded by sensors that receive most of their
received power from x. More formally, we localize an intruder x at location [ if (i) I’s
“neighborhood” has at least 3 sensors that receive most of their power from x, and
(ii) there are no other intruders in the “vicinity” of . In essence, we iterate over all
locations [, and localize an intruder at [ if the above conditions are satisfied with high
enough probability, based on the readings of sensors around [. The precise definition
of neighborhood above must depend on z’s transmission radius which depends on its
transmit power; however, as x’s transmit power is unknown, we iterate over smaller
and smaller neighborhoods.

We now formally describe the procedure. Let R, denote the transmission radius
for a transmit power of p. Let R denote the maximum transmission radius, i.e.,

max Iz,
p

In the below description, we use a fractional value f to define a neighborhood and
vicinity size. We start f equal to 1, use a disk of radius fRz, as a neighborhood and
R + fR, as the vicinity, and iterate over the procedure for reduced values of f.
(a) Let f = 1.
(b) For each location and power pair (I,p), compute P(H;,|x;,) using a form of

Equation 2.1 over appropriate JPDs. Here:

e H,;, represents the hypothesis that an intruder is at location [ and using p
transmit power. We also implicitly assume that there is no other intruder
present within a distance of R+ f R, from [; this ensures that the observations
in x;, are only due to the intruder at [. See Figure 2.3.

e x;, represents the observation vector for all sensors, but the sensors that
are within a radius of fR, around [ use an observation of “residual” received
powers, as defined below, while the remaining sensors (outside the radius
of fR, around [) use an observation of the “noise floor” (in essence, we are
“zeroing” the observations of the far-away sensors). See Figure 2.3.

(c) Denote (I, p) pairs that have P(H,;,|x;,) higher than a certain threshold as peaks.
If a location [ is a peak and there are no other peaks within a distance of R+ fR,,
then localize an intruder at [ with transmit power p.
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Figure 2.3: Illustration of Hypothesis H;, in Step (b) of Procedure 1. Here, the
intruder 7 at location [ is transmitting at power p, with no other intruder within a
distance of R + fRR, from I. The observation vector x;, consists of residual received
powers from R1 to R4, and “noise floor” from the remaining sensors.

(d) For each sensor s, define its residual received power (RRP) as the total received
power reduced by the sum of mean powers received from already localized intrud-
ers; the desired mean values are available from the given JPDs.

(e) Reduce f and go back to step #2 above, unless no new intruders were localized
in (c) above. In our experiments, we used f =1,1/2,1/4 and 1/8.

The above procedure is partly inspired by the recent localization work [193]. How-
ever, instead of discarding sensors based on their individual power and clustering the
rest as in [193], we “discard” sensors based on their neighborhood readings (i.e., like-
lihood P(x|H;) values) and then “cluster” the remaining sensors. Also, we “cluster”
iteratively, for smaller and smaller neighborhoods.

Procedure 2. Localize Intruders Situated Close-By. Once we have localized
separated intruders as above, we now localize the remaining intruders, if any, by
applying the general MAP algorithm independently over “subareas” that still have some
sensors with high-enough RRP (residual received power), but no intruder localized in
the “vicinity.” Formally, the procedure is as follows. Let T" be the maximum number
of intruders allowed within a disk of radius R, the maximum transmission radius.

(a) Let s be the sensor with the highest RRP; if s’s RRP is below a certain threshold
(tantamount to noise), then quit.

(b) For t = 2 to T: Use MAP (from §2.2.2) to try to localize ¢ transmitters within a
disk of radius R around s, using observations of sensors within a radius of 2R
from s. We use a certain threshold for a posterior probability, in a similar way as
for Procedure 1.

(c) Update RRP of each sensor, and go to step (a) above.
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Time Complexity. The worst-case time complexity of the first procedure is
O(LWGRlog(GRr)), where L and W are the number of potential locations (total grid
cells) and transmit power levels respectively, and Gg is the maximum number of grid
cells within a transmission range of an intruder. Here, the first term O(LW GR) is the
time to compute the likelihood values in each iteration, since the number of sensors
involved in each computation is at most Gr. Note that the number of iterations
is bounded by log(Gg), as f is reduced by a constant multiplicative factor. The
worst-case time complexity of the second procedure is O(Gr(Gg)") where T is the
maximum number of intruders allowed /possible in a transmission region (i.e., a circle
of radius at most R). Thus, the overall time complexity of the above localization
algorithm is O(L.W.Gr.log(GRr) + Gr.(Gr)"). Generally, we would expect T to be a
small constant, as more than 3 intruders in a R-radius region with a R transmission
range would interfere with each other. If we also consider Gy as a small constant, the
overall time complexity can be considered to be O(L.W). In the following subsection,
we further reduce the time complexity by removing the factor of W.

2.3.2 Intruder Power Estimation in the Continuous Domain

In this subsection, we derive a closed-form expression to estimate an intruder’s power
in the continuous domain, for the special case of single intruder and Gaussian prob-
ability distributions [98]. The derived result essentially removes the assumption of
discrete power levels, and reduces the number of hypotheses to consider by a factor
of W. We use this result within Procedure 1 of the previous subsection to further
optimize its time complexity and performance.

Estimating Intruder Power, Given a Location. Consider the special case of a
single intruder in an area. In this case, each hypothesis can be represented as H;p,
for each location [ and power p of the potential intruder. Let us focus on a particular
location {* and the corresponding hypotheses H;- ,. For a given observation vector x,
we wish to estimate the power P that corresponds to the hypothesis with maximum
likelihood among the hypotheses H;- .

P = arg max, P(H »|x)

The value P can be computed by computing P(#,-,|x) for each p, but our goal is to
derive a closed-form expression for P from the given JPDs; such an expression yields
power estimate in continuous domain without computing P(#,- ,|x) for each possible
discrete p.

For each sensor (location) j, let P(x;|H,;= ,) represent the probability distribution
(PD) of j’s observations x; when the intruder is at {* transmitting with power p*, the
power used at training. For a fixed [* and p*, the set of PDs P (x;|H,~ ,) are equivalent
to the JPDs defined in §2.2 under the assumption of conditional independence?. Let
us assume that the above PDs are Gaussian distributions [98], and thus, can be

2PD P(x;|H+p) can be computed P(x;|H;» ) for any p, as the path-loss can be assumed to
be independent of the transmit power, and JPD P(x|H;~,) can be computed as product of PDs
P(x;|Hi+ p) due to the conditional independence assumption.
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represented as P(x;|Hp p») = N (5, 0?) for a given [* and p*. In the above setting,
the power value P that maximizes P(H;- ,|x) can actually be derived as a closed-form

expression; we state the result formally in the below lemma.

Lemma 1. Consider the special case of a single intruder in an area. For a specific
location I* and power p* (the only power used during training), let P(x;|H ,+) rep-
resent the PDs of the sensor observations at location j. Now, given the above PDs
for various j and an observation vector x, the power value P = arg max,P(H »|x)

s given by:
s
Zj:l %5(55] — W)

S
2 =102

J

P+

)

where v = Hle 0]2- and S equals the number of sensors in the neighborhood of 1*. m

The proof is in Appendix 6.6. Here, we give its intuition based on a special

case. Consider the special case wherein each o; is 1 for all j. In this special case,

S
the Lemma’s equation reduces to P = p* + W, which implies that if each

observation x; is ¢ more than its mean p; then P is also ¢ more than p*. We note
that the above result does not extend to the case of multiple intruders. In short, the
proof is a process of solving maximum likelihood estimation and multiple intruders
introduce transcendental functions, thus cannot derive a closed-form solution.

Use of Lemma 1 in MAP*. For localization of multiple intruders, Lemma 1 can
only be used in Procedure 1 of §2.3.1, due to its assumption of a single intruder. In
particular, we can Procedure 1 of §2.3.1 as follows.

e We replace R, by R, the maximum transmission radius.

e For each location [, using Lemma 1, we first compute the power p(l) such that
the hypothesis H; ;) has the most likelihood (among the hypotheses at [) using
the observations from sensors within a radius of R.

e Then, in the rest of the procedure, we only consider the (location, power) pairs
of the type (I, p(l)) for any [.

The rest of the Procedure 1 remains unchanged. The above change has two benefits.
First, the powers predicted in Procedure 1 are now continuous rather than discrete.
Second, the above removes the factor of W from the time complexity of MAP* and
reduces it to O(LGrlog(Gr)+Gr(GRr)") which becomes O(L) if we consider G and
T to be relatively small constants.

2.3.3 ILDW: Optimizing Training Cost

As in supervised machine learning algorithms, our Bayesian approach also needs
training data. We use the term training to denote the process of collecting data
and building up the JPDs for the hypotheses. Note that this training phase is done
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only one-time,® and hence, a certain cost is acceptable. The training cost incurred
during such data gathering depends greatly on the exact mechanism used for such
purposes, e.g., drones with appropriate routes can be used to gather such data [205].
In general, the cost of training would depend on the number of JPDs that need to be
constructed, with the cost reduced with a reduction in the number of JPDs needed. In
this subsection, we design effective interpolation schemes that are useful in reducing
the number of JPDs gathered which in turn will reduce the overall training cost. Note
that reduction in JPDs constructed from raw data is bound to negatively impact the
accuracy—we will evaluate this trade-off in our evaluations and show that impact on
accuracy is minimal even with a significant reduction in training cost.

Probability Distributions. First, we note that making the following reasonable
assumptions and observations can greatly reduce the number of JPDs/PDs to be
constructed.

e If we assume conditional independence of sensor observations, then JPDs can
be computed from independently constructed probability distributions (PDs) of
received powers at individual sensors.

e Since received power at a sensor location x due to multiple transmitters is
merely a sum of received powers [130, 213| due to individual transmitters, we
can compute PD at x for a particular hypothesis involving a set .S of intruders
from PDs due to each individual intruder in S.

e Lastly, we need to only construct a PD for one transmit power for each transmit-
ter and sensor location pair, since path loss is independent of transmit power.

Based on the above observations, if there are L discrete locations in an area for
sensors or intruders, then a MAP-based approach requires L? PDs. Below, we propose
to minimize the number of PDs to be constructed via data gathering/training, by
estimating the remaining unconstructed PDs via interpolation.

Minimizing Training Cost with ILDW. Consider a particular location [* of a po-
tential intruder. Our eventual goal is to compute the PD for each of the L possible
sensor locations for this location [* of a potential intruder; a PD may be computed
either by constructing it directly from gathered sensor observations or by estimation
via interpolation from the constructed PDs. In particular, for effective interpolation,
we construct PDs at coarser-grid sensor locations and estimate via interpolation the
PDs at the remaining finer-grid locations. See Figure 2.4. The exact coarseness at
which the PDs are constructed is determined by the accuracy of the interpolation
scheme for a given area and/or the impact on localization accuracy due to estimated
PDs. Below, we describe the interpolation scheme that we use for our purposes.

3JPDs depend on the channel state and hence, must be updated periodically to account for any
changes in the environment (e.g., terrain, buildings, etc.); however, such environment changes are
infrequent. Also, note that the online-training of §2.4 is done repeatedly, but only for specific sensors
and authorized users, and thus incurs minimal cost. See [302] for spectrum sensing in both spatial
and temporal domains.
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Figure 2.4: Training for PDs at coarse-grained locations (yellow bigger dots), while es-
timating PDs using interpolation at the remaining fine-grained locations (red smaller
dots).

T RlL RO R2
S S W JUT TN . >,,,,
.0 1 ,2 .4 X
(a)
RSS = — 10 — 30/ogqp(dist)
—-18 —18
R1: -19.0 === RSS N R1:-19.0 == RSS
—20 — IDW | —20] ILDW
RO: -23.5 RO: -24.3
—22 -22
w
%}
24 —24
-26 -26
-28 R2:-28.1 —28 1 R2: -28.1
2 3 a 0.30 0.48 0.60
Distance to TX Logig(Distance to TX)
(b) (c)

Figure 2.5: Illustration of ILDW vs. IDW. (a) Transmitter (T), points with known
(R1 and R2) and unknown (RO) received signal strength (RSS) values. (b) Log-
normal RSS function (= -10 - 30log,,(distance)) plotted for varying distance from
the transmitter 7', along with IDW-estimated RSS value at a point between R1 and
R2. (c¢) Log-normal RSS function and ILDW-estimated RSS value at a point between
R1 and R2, plotted on a logarithmic distance scale.
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ILDW Interpolation Scheme. Consider a fixed transmitter location [*, and let us assume
locations Ry, Ry, - - - , R,, for which we know the path loss from {*. Now, consider a new
point Ry for which we wish to estimate the path-loss from [*. This is a traditional
interpolation problem and well-known schemes such as inverse distance weighting
(IDW), Ordinary Kriging (OK), k-NN, etc. have been evaluated even in the special
context of signal strength or received power [38]. However, our specific context has a
unique element. We know the location [* of the transmitter from which the path-loss
is being estimated—as we are in the training phase wherein we are gathering observa-
tions with the transmitter at {*. In light of the above unique element of our setting,
and the observation of wireless signal characteristics, we use a custom interpolation
technique which is a nontrivial modification of the IDW scheme, called inverse log-
distance weighting (ILDW). The traditional IDW interpolation scheme estimates the
path loss at Ry by taking a weighted average of the path losses at Ry, R, -+, Ry,
with the weight being the inverse of the distance from Rj.

In our proposed ILDW scheme, we still estimate the path loss at Ry as a weighted
average of values at R;’s, but assign weights differently. In particular, we assign the
weight for the point R; as the inverse of the “distance” between Ry and R; in the
domain where each point is represented merely by its logarithmic distance from [*,
the known transmitter’s location—i.e., each point R; is mapped to a point log d(R;, [*)
on a line. This mapping is motivated by the expectation that the actual path loss
would be somewhat similar to the log-distance path loss. Thus, the weight for the
point R; is assigned to be

1
YT Tog d(R,, 1) — log d(Ro, I7)]

where d() is the Euclidean distance function and the path loss at Ry is estimated as:

where u; denotes the path loss at point R; from [*. In the above equation for weights, if
the denominator is zero, then we assign w; to be equal to the maximum of the weights
among the given points (and if all denominators are 0, each weight is assigned to be
1). For an illustration of the above scheme, see Figure 2.5. In the IDW scheme, R,
and Ry will get equal weights, but under the ILDW scheme they will get weights of 5.57
and 8.00 respectively. More importantly, it can be easily shown that, for log-distance
path loss, ILDW estimates the path loss for Ry accurately from two unknown points
Ry and R,, if d(Rl, l*) < d(Ro,l*) < d(RQ,l*)

The above discussion has been on using ILDW for estimating path-loss values. In
general, it can be easily used to estimate PDs from the PDs at neighboring points—
essentially, we can use ILDW to estimate both the mean and standard deviation of a
Gaussian PD from other means and standard deviations respectively.
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Figure 2.6: MAP**’s overall approach

2.4 MAP** Localizing in Presence of Authorized Users

We have implicitly assumed till now that the only transmitters present in the area are
the intruders which need to be localized. In this section, we adapt our MAP* approach
described in the previous section to the setting wherein there may be authorized
transmitters in the background and the localization technique must take their presence
into account. In particular, in a shared spectrum paradigm, there are primary users
and an evolving set of active secondary users transmitting in the background. The
key challenge comes from the fact that the set of authorized users is not static and
changes over time as allocation requests are granted and/or active secondary users
become inactive over time.

One simple way to handle background users is to just localize every transmitter,
and then remove the authorized users. However, any localization approach (including
ours) is susceptible to performance degradation with an increase in the number of
transmitters to be localized, especially if some of them are situated close together.
Thus, this simple approach of localizing every transmitter is unlikely to be effective,
as shown in our evaluations, especially when the number of primaries and active
secondaries can be large. Thus, here, we develop an approach based on learning PDs
in real-time in response to changes in the set of secondary users.

MAP**: Localizing with Authorized Users. Our problem is to localize intruders in a
shared spectrum system with fixed primaries and changing set of secondaries. Our
MAP** approach uses a combination of a priori (offline) and online training to construct
JPDs for appropriate hypotheses based on gathered observations, and then use these
JPDs to localize intruders in real-time using the MAP* approach described in the
previous section. We start with defining a few useful notations.

We use R to denote the set of (fixed) primaries, and K to denote the set of
secondaries at a given instant, and Z; to denote the j' configuration of intruders (we
can assume the zeroth configuration to represent no intruders). We use 7 = RUKUZ;
to denote the set to all transmitters (authorized and unauthorized) at a given instant.
Finally, we use P(x|(7 = X)) to denote the joint probability distribution (JPD) of
observation vectors from the deployed sensors when the prevailing hypothesis is that
the set 7 of transmitters is X. MAP** is the sequence of the following steps.

1. (Offline Step.) Construct JPDs P(x|R) and P(x|r = (Z; UR)) for all j. Since
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these JPDs are independent of the secondaries, they do not change and can be
done once a priori.
2. (Online Steps.) Whenever K (set of secondaries) changes:

(a) Construct JPD P(x|r = (RUK)).
(b) Compute P(x|T = (RUZ; UK)) for all j, from above constructed JPDs, viz.,
P(x|R), P(x|T = (Z;UR)), and P(x|7 = (RUK)). See the below observation.

3. (Real-time Localization.) Periodically, each sensor sends its observation to a cen-
tralized entity (spectrum manager) which uses MAP* to localize any intruders
present. Here, localization essentially means determining the most likely pre-
vailing hypothesis among the hypotheses 7 = (R UZ; U K), based on the JPDs
P(x|T = (RUZ; UK)) constructed in earlier steps.

Note that steps 1 and 2a are essentially learning the authorized users’ signal
charecteristics and view them as the “background signals”. If there are no authorized
users, then the background signals are “quiet”. Else, then the background signals have
some "sound". We now state the observation that forms the basis of JPD computation
in step 2b; note that the noise due to sensor’s hardware gets duplicated when “adding”
two JPDs, but can be easily removed.

Observation 1. The JPD P(x|(t = AU B)) and be computed from JPDs P(x|(T =
A)) and P(x|(T = B)). Similarly, JPD P(x|(T = A)) can be computed from the JPDs
Px|(tr = AUB)) and P(x|(T = B)).

Blind Period due to Step 2. Note that the steps 2a and 2b construct or compute
the JPDs needed for localization, and thus, during their execution, the localization
cannot be done. Thus, it is important that the duration of this “blind period” in
minimal. Fortunately, step 2b being a simple mathematic computation takes only
in the order of milliseconds under efficient implementation, while 2a merely entails
gathering a sufficient number of observations to construct the desired JPD which
could take anywhere from milliseconds to a few seconds, as an observation takes only
a fraction of a millisecond [39).

Mobility of Users and Sensors. We note that MAP* works seamlessly for mobile
intruders and sensors, due to the constructed PDs. However, MAP** has the following
limitation: the sensors must remain static in between two consecutive online-training
periods (i.e., step 2 of above). If a sensor X moves, then either X’s observation must
be ignored, or that X needs to online-train itself in its new location (and there should
be no intruders during this individual online-training phase). Note that active SUs
are expected to remain static anyway, as they are allocated spectrum for a specific
location.

2.5 Large-Scale Simulation Results

To evaluate our techniques in a large scale area (a few km square), we conducted sim-
ulations over a geographic area using path-loss values from the Longley-Rice prop-
agation model generated by open sourse software SPLAT! [179]. We describe the
simulation setting below and discuss the results.
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2.5.1 Settings

Generating Probability Distributions. To evaluate our techniques over a large
area with 100s of sensor nodes, we need to run simulations with an assumed propa-
gation model. We use the well-known Longley-Rice [42]| Irregular Terrain With Ob-
struction Model (ITWOM), which is a complex model of wireless propagation based
on many parameters including locations, terrain data, obstructions, soil condition,
etc. We consider an area of 4km x 4km in the NY state and use the 800 MHz band
for SPLAT! We discretize the area using 40 vertical and 40 horizontal grid lines—
yielding 1600 cells each of size 100m x 100m. To generate a probability distribution
(PD) at a sensor location = due to a transmitter at location [ transmitting at power
p*, we compute the received power at x using transmit power minus path-loss from
SPLAT!, and use it as the mean of the probability distribution. For the complete
PD, we assume Gaussian distributions and use a standard deviation between 1 and
3, with higher values for pairs (z,[) with smaller distance. As mentioned before, the
PD due to multiple simultaneous transmitters can be computed as just a “sum” of
the Gaussian distributions due to individual transmitters [130, 213].

Algorithms Compared. For the MTL problem, we compare our MAP* algorithm with
SPLOT [130] and CLUS [193] (see §2.2.1). As mentioned before, [194] has been shown
to be inferior in performance to both SPLOT and CLUS in their respective works, and
thus, not evaluated here. CLUS uses k-means [204] for clustering and needs to be
provided with the number of clusters. To do a somewhat fair comparison, we provide
CLUS with a range of the number of intruders and use the elbow-point method to pick
the best number of clusters/intruders. In particular, the range of intruders passed to
CLUS is 1 to 2x, where x is the actual number of intruders present.

Table 2.1: Simulation Evaluation Parameters.

Param. Value Description
Q) 0.6  Threshold for Procedure 1’s hypothesis posterior
Q’Q 0.1  Threshold for Procedure 2’s hypothesis posterior
R 1000 Transmission radius when power is p*, (m)
p* 30 Transmit power during training, (dBm)
dp 2 Range of intruders’ power is [p* — d,, p* + d,]

For SPLOT, we use the same set of parameter values as in [130] except that we use
the confined area radius to be 800m for our large area setting ([130] only considered
small 15m x 15m areas; 800m is roughly the maximum transmission radius in our
large-scale setting and other values yielded worse results). Table 2.1 gives the main
parameters of MAP* used in our evaluations. Recall that the transmission radius is
the distance between the TX and RX for which the RX’s RSS is at the noise floor
(we use -80dBm).
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Figure 2.7: Localization performance of various algorithms in a large scale area, for
varying number of intruders

2.5.2 Five Evaluation Metrics.

We use the following metrics to evaluate the localization methods.

1. Localization error (Le).
2. Miss rate (M,).
3. False alarm rate (F,).

4. Power error (Pey).

The above metrics are best explained using a simple example. Given a multi-intruder
localization solution, we first compute the L, as the minimum-cost matching in the
bi-partite graph over the ground-truth and the solution’s locations, where the cost of
each edge in the graph is the Euclidean distance. We use a simple greedy algorithm to
compute the min-cost matching. The unmatched nodes are regarded as false alarms
or misses. E.g., if there are 4 intruders in reality, but the algorithm predits 6 intruders
then it is said to incur 0 misses and 2 false alarms and if it predicts 3 intruders then it
incurs 1 miss and 0 false alarms. The M, and F, metrics are on a per-intruder basis,
so in the above two examples: M, is 0 and 1/4 and F, is 2/4 and 0. In the plots, we
stack miss rate and false alarm rate together to show the overall difference between
the true number of intruders and predicted number of intruders. P, is the average
difference between the predicted power and the actual power of the matched pair in
the above bi-partite graph.

Finally for interpolation schemes, we use the metric (5) interpolation error (Iy)
defined as the estimated path-loss minus the ground-truth path-loss value.

2.5.3 Results

In this subsection, we evaluate the performance of our techniques for varying param-
eter values, viz., number of intruders and sensors in the field, and training cost. Here,
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the training cost is defined relative (specifically, as a percentage of) to the full train-
ing scenario wherein we construct each of the 1600 x 1600 PDs (one for each pair of
transmitter and sensor locations) directly from observations. E.g., % training cost
indicates that we construct 1600 x (16x) PDs directly, and interpolate the remaining
1600 x (1600 — 16z) PDs; our proposed interpolation scheme only interpolates for
sensor locations. In general, when we vary a specific parameter, the other parame-
ters are set to their default values which are: 9% for training cost, 5 for number of
intruders, and 240 for number of sensors. For each experiment, the said number of
sensors and intruders are deployed randomly in the field, with the intruders deployed
in the continuous location domain while the sensors deployed only at the centers of
the grid cells. Each data point in the plots is an average of 50 experiments.
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Figure 2.8: Localization performance of various algorithms in a large scale area, for
varying sensor density

Varying Number of Intruders. First, we compare the localization accuracy of
various algorithms for varying number of intruders. See Figure 2.7. We vary the
number of intruders from 1 to 10. We observe that the localization error of MAP* is
the minimum across the three algorithms. The localization error is 45% — 74% less
than SPLOT. In terms of the M, and F,, MAP* also performs others which confirms
the overall performance of MAP* to be the best among the algorithms compared. In
terms of absolute performance, note that the localization error of 50-150m indicates
an error of 1-2 grid cells, and thus is minimal in the context of the large area of 4km
by 4km with 1600 cells and a sensor population of 240. Investigating further, we
observe that misses in MAP* are mostly due to the interpolated PDs (note that only
9% of the PDs are constructed from the actual sensor observations and the remaining
91% are interpolated), while SPLOT’s misses are mainly from the case of two or more
intruders being close to each other. This demonstrates the superior ability of MAP* to
localize intruders that are close-by via the designed sequence of Procedures 1 and 2.

Intruder Power Estimation, and Computation Time. Table 2.2 shows the mean abso-
lute error (MAE) and mean error (ME) of the intruder’s predicted power by MAP*.
Note that CLUS and SPLOT do not predict the intruder’s power, and hence, are not
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Table 2.2: MAP* Power Error (dB)

# Intru. MAE ME

1 0.56 -0.07
3 1.02  0.89
5 1.31  0.97
7 1.52  1.16

10 147 1.04

Table 2.3: Running time (s)

# Intru. MAP* SPLOT CLUS

1 055 0.56 0.03
3 1.07  1.02 0.11
) 5.74 135 0.23
7 814 163 0.30

10 16.50 1.89 041

shown. We observe that MAP* is able to predict intruder’s power quite accurately.
The errors increase with the increase in number of intruders. Also, the mean error
begins at near zero and then turns positive. Table 2.3 shows the running time of
various algorithms over an Intel i7-8700 3.2 GHz processor. We see that CLUS is the
fastest, and the running times of MAP* and SPLOT are comparable for a small num-
ber of intruders, but for a larger number of intruders, MAP* takes longer time than
SPLOT mainly because of more number of iterations of the computationally intensive
Procedure 2.
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Figure 2.9: Estimation errors for interpolation schemes for varying training data

Varying Sensor Density. We now vary the total number of sensors in the field and
observe the impact on the performance of various algorithms. See Figure 2.8, where
the number of sensors is varied from 80 to 400. We see that all algorithms perform
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better with an increasing number of sensors as expected, with MAP* performance
improving significantly (in both L., as well as f, + m,) as the number of sensors is
increased from 80 to 160. More importantly, except for a very low number of sensors
(i.e., 80), MAP* handily outperforms the other two algorithms.

Varying Training Cost. Finally, we now investigate how the training cost (i.e.,
the number of PDs constructed from raw observations) affects the performance of
our MAP* algorithm. Note that the other algorithms do not depend on the training
data, hence not shown. We first evaluate the interpolation error of our ILDW scheme
for varying training cost (number of known PDs) by comparing with the traditional
IDW scheme on which it is based. See Figure 2.9, which plots the mean absolute error
(MAE) as well as mean error (ME). As the interpolation error is substantially higher
for points that are closer to the transmitter, we plot MAE and ME as averaged over all
interpolated points as well as over just the points close (less than 800m away) to the
transmitter. Note that the PDs at sensor locations closer to the transmitter would
have a stronger bearing on the localization accuracy, and thus, the MAE and ME
values for points closer to the transmitter are of more significance. We observe here
that as expected both MAE and (absolute value of) ME decrease with an increase in
the training cost for both IDW and ILDW, but MAE and ME of ILDW are significantly
lower than that of IDW, especially for low percentages of training cost and when the
points are close to the transmitter.

We now plot the performance of MAP* for varying training data; see Figure 2.10.
As expected, the performance metrics show general improvement with an increase
in the amount of training. More importantly, we note that with 5-10% of training,
MAP* achieves performance comparable to that with 100% training, suggesting that
our interpolation scheme is largely effective as long as 5-10% of PDs are constructed
from raw observations.
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Figure 2.10: Localization performance of MAP* in a large scale area, for varying train-
ing data

In Presence of Authorized Users (MAP**). We now evaluate the performance
of our MAP** approach which is tailored to work in the presence of authorized users.
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To evaluate MAP**, we place 5 authorized users in the area—with 2 primary and 3
secondary users. The primary users are placed at fixed locations, while the secondaries
are put at random locations. We assign each authorized user a random power in the
range of 30 to 32dBm, while, as before, a random power between 28 and 32dBm to
the intruders. To ensure that these 5 authorized users do not “interfere” with each
other, we ensure that the distance between any two of these authorized users is at
least 1000m. We compare MAP** with the simpler approach called MAP*' that uses
MAP* to localize all transmitters (authorized as well as intruders) and then remove
the predicted transmitters that are closest to the authorized users. See Figure 2.11,
which shows that MAP** easily outperforms MAP** for varying number of intruders.
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Figure 2.11: Localization performance of MAP** and MAP** in large-scale simulations
with authorized users present, for varying number of intruders

2.6 Testbed Implementation

In this section, we implement our techniques over commodity devices and evaluate
them over two small-scale testbeds—one indoor and one outdoor. Outdoor environ-
ment is a realistic setting for our target application of shared spectrum systems, while
the indoor environment provides more challenging signal attenuation characteristics
due to walls and other obstacles.

Sensor and Transmitters Used. Our low-cost (sub $100, see [64] for a measure-
ment study of low-cost spectrum sensors) sensing device is composed of a single-board
computer Odroid-C2 with an RTL-SDR dongle that connects to a dipole antenna. We
deploy 18 of these sensing devices in our indoor and outdoor testbeds and configure
them for low gain. For transmitters/intruders, we use USRP B210 and HackRF de-
vices powered by laptops; we place these on a cart for mobility. These transmitter
devices are uncalibrated, and there is no way to assign a specific transmit power.
However, they have a configurable parameter called gain which is almost perfectly
correlated to power when the gain is in a specific range, i.e., when the transmitter’s
gain is increased by 1, the receiver’s signal strength increases by 1dB. We thus use
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(a) Indoor lab environment (b) Floor plan

Figure 2.12: Indoor testbed. (a) Our lab used for the indoor testbed, (b) The lab’s
floor plan.

(a) Outdoor parking lot environment (b) Satellite

Figure 2.13: Outdoor testbed. (a) Parking lot picture, (b) Satellite image of the
parking lot; the red box is the area of the experiment, and the stars are the locations
of sensing devices during evaluation.

the gain parameter to adjust transmit power in the USRP devices. For indoor exper-
iments, the location is manually derived, while for outdoor experiments, we use GPS
dongles connected to the laptops. For collecting sensor observations, we implemented
a Python repository in Linux that measures spectrum in real time at 915MHz ISM
band and 2.4Msps sample rate. The repository collects 1/Q samples fetched from
the RTL-SDR dongle and computes the RSS value, then records the RSS along with
timestamp and location. These three pieces of information are sent to a server that
runs the localization algorithms.

Testbeds. The indoor testbed is built in a lab of our Computer Science building.
Figure 2.12 depicts the lab with its floor plan. The red box in the floor plan is the
area where experiments are conducted. The area is 9.6 x 7.2 m? (or 2177 square
feet) large, with four rows of desks. The middle two rows are separated by a wooden
board. The area is imagined to be divided into 48 grid cells each of size 1.2m x 1.2m,
with the help of ceiling tiles each of which is 0.6m x 0.6 m. The outdoor testbed is
over an open space parking lot. See Figure 2.13. The area is 32m x 32m. We divide
the area into 100 grid cells with each cell representing an area of 3.2m x 3.2m. The
GPS device returns the location in (latitude, longitude) and the program converts it
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into coordinates. We use an outdoor WiFi router and long power cords for network
and electrical connection respectively. During the evaluation, the 18 sensing devices
are placed on the ground and are randomly spread out.

Training. In both the testbeds, for training (i.e., constructing non-interpolated
PDs), we first pick 18 random grid cells and place sensors in their approximate cen-
ters. Then, we manually move the transmitter around in a cart through each of the
grid cells. For the USRP transmitter, we use a gain value of 45 in the indoor environ-
ment and 58 in the outdoor testbed. We use a higher gain for outdoors to allow the
transmitter to have a larger transmission range in a larger area. With each grid cell,
the transmitter transmits from 3 to 4 different points within each grid cell, and for
each such location of the transmitter, the sensors (at the 18 picked locations) gather
tens of signal strength readings. From these readings, we construct a Gaussian prob-
ability distribution from each grid cell location of the transmitter. More specifically,
for a particular grid cell location of the transmitter, we average over the readings
from multiple TX positions within that particular grid cell—this process of averaging
different positions of the TX inside a grid cell makes the Gaussian distributions more
robust to multipath fading and shadowing. The overall training process takes an hour
for indoors, and about two and a half hours for outdoors.
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Figure 2.14: Localization performance of various algorithms in an indoor testbed

Evaluation. For evaluation, in both testbeds, we place the 18 sensors at centers of
grid cells that are randomly chosen and are different from the cells chosen for the train-
ing above. The chosen locations for the outdoor testbed are shown in Fig. 2.13(b).
We choose the intruder’s gain/power to be in the range of [p* — 1, p* + 1|, where p* is
the gain/power used during the training phase as mentioned above. Roughly half of
our experiments involve close-by (in the same or adjacent grid cells) intruders. Lo-
calization is done on a laptop which listens to HT'TP requests containing the sensors’
observations.
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Figure 2.15: Localization performance of various algorithms in an outdoor testbed

2.6.1 Results

Localization Metrics. Figure 2.14-2.15 show the localization results for the indoor
and outdoor testbeds respectively. Overall, the results indicate that MAP* performs
the best across all metrics, with the overall performance gap between MAP* and SPLOT
increasing with the increase in number of intruders. When the number of intruders
is 3, the performance of SPLOT is significantly worse than MAP* due to a significantly
higher (84% for indoors and 53% for outdoors) sum of miss and false-alarm rates and
43% higher localization error. The CLUS algorithm generally performs the worst, but
its performance doesn’t have a strong correlation with the increase in the number of
intruders; recall that CLUS is given the range of number of intruders as an extra piece
of information compared to the other algorithms. In terms of absolute performance,
we see that the localization error of MAP* is roughly around 1 or less grid cell, and
the sum of miss-rate and false-alarm is between 5-15%.

Table 2.4: Interpolation Mean Absolute Error (MAE) and Mean Error (ME) in dB
for IDW and ILDW

IDW TLDW IDW ILDW
Environment | (MAE) (MAE) (ME) (ME)
Indoor 2.6 1.7 1.7 0.25
Outdoor 6.2 2.7 5.8 0.48

Interpolation Error. Table 2.4 shows the interpolation mean absolute error (MEA)
as well as mean error (ME) of IDW and ILDW when the transmitter and receiver are
close by (i.e., within a distance of 3 grid cells). When the transmitter and receiver
are far away, the difference between IDW and ILDW is small and thus not shown. We
see that when compared with IDW, our ILDW interpolation scheme decreased the mean
absolute error by 35 percent in the indoor environment and 56 percent in the outdoor
environment. In terms of mean error, ILDW reduced the error compared to IDW by
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as large as 86 percent and 92 percent respectively. This is because IDW mostly tends
to estimate the value to be larger than the ground truth, while ILDW’s estimates are
more even across the ground truth.

Table 2.5: Power Prediction Mean Absolute Error (MAE) and Mean Error (ME) in
dB for indoor and outdoor testbed

Indoor Outdoor Indoor Outdoor
# Intruder | (MAE) (MAE) (ME) (ME)

1 0.34 0.50 -0.02 0.02
2 0.57 0.63 0.10 0.54
3 0.77 0.90 0.49 0.76

Intruder Power. Table 2.5 shows the errors in the predicted powers of the intruders
in MAP*. We see that the outdoors have a slightly higher power prediction error, likely
because of a larger number of grid cells. We also note that with the increase in the
number of intruders, the error in predicted power increases.

2.7 Conclusion

In this chapter, we have developed an efficient Bayesian approach with a noval inter-
polation scheme to localize multiple transmitters in presence of authorized users, and
demonstrate its superior power over large-scale simulations and smaller scale indoor
and outdoor testbeds. In our future work, we wish to extend our techniques to allow
a continuous location domain and design methods to further minimize training cost.
In addition, we will consider alternate signal measurements such as angle-of-arrival

(AoA).
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Chapter 3

DeepMTL: Deep Learning Based
Multiple Transmitter Localization
and Power Estimation

In this chapter, we address the problem of Multiple Transmitter Localization (MTL).
MTL is to determine the locations of potential multiple transmitters in a field, based
on readings from a distributed set of sensors. In contrast to the widely studied single
transmitter localization problem, the MTL problem has only been studied recently in a
few works. MTL is of great significance in many applications wherein intruders may be
present. E.g. in shared spectrum systems, detection of unauthorized transmitters and
estimating their power are imperative to efficient utilization of the shared spectrum.

In this chapter, we present DeepMTL, a novel deep learning approach to address
the MTL problem. In particular, we frame MTL as a sequence of two steps, each of
which is a computer vision problem: image-to-image translation and object detec-
tion. The first step of image-to-image translation essentially maps an input image
representing sensor readings to an image representing the distribution of transmitter
locations, and the second object detection step derives precise locations of transmit-
ters from the image of transmitter distributions. For the first step, we design our
learning model sen2peak, while for the second step, we customize a state-of-the-art
object detection model YOLOv3-cust. Using DeepMTL as a building block, we also
develop techniques to estimate the transmit power of the localized transmitters. We
demonstrate the effectiveness of our approach via extensive large-scale simulations
and show that our approach outperforms the previous approaches significantly (by
50% or more) in performance metrics including localization error, miss rate, and false
alarm rate. Our method also incurs a very small latency. We evaluate our techniques
over a small-scale area with real testbed data and the testbed results align with the
simulation results.
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3.1 Introduction

The RF spectrum is a limited natural resource in great demand due to the unabated
increase in mobile (and hence, wireless) data consumption |8, 192]. In 2020, the U.S.
FCC moves to free up 100 MHz of previously military-occupied mid-band spectrum
in the 3.45-3.55 GHz band for paving the way for 5G development. Also, the research
and industry communities have been addressing this capacity crunch via the devel-
opment of shared spectrum. Spectrum sharing is the simultaneous usage of a specific
frequency band in a specific geographical area and time by a number of independent
entities where harmful electromagnetic interference is mitigated through agreement
(i.e., policy, protocol) [83]. Spectrum sharing techniques are also normally used in
5G networks to enhance spectrum efficiency [138]. However, protection of spectrum
from unauthorized users is important in maximizing spectrum utilization.

The increasing affordability of the software-defined radio (SDR) technologies makes
the shared spectrum particularly prone to unauthorized usage or security attacks.
With easy access to SDR devices (e.g. HackRF, USRP), it is easy for selfish users
to transmit data on a shared spectrum without any authorization and potentially
cause harmful interference to the incumbent users. Such illegal spectrum usage could
also happen as a result of the infiltration of computer viruses or malware on SDR
devices. [138]| depicts three cases of spectrum attack. As the fundamental objective
behind such shared spectrum paradigms is to maximize spectrum utilization, the
viability of such systems depends on the ability to effectively guard the shared spec-
trum against unauthorized usage. The current mechanisms however to locate such
unauthorized users (intruders) are human-intensive and time-consuming, involving
the FCC enforcement bureau which detects violations via complaints and manual
investigation [130]. Motivated by the above, we seek an effective technique that is
able to accurately localize multiple simultaneous intruders (transmitters). Below, we
describe the multiple transmitter localization problem.

Multiple Transmitter Localization (MTL). The transmitter localization problem
has been well studied, but most of the focus has been on localizing a single transmitter
at a time. However, it is important to localize multiple transmitters simultaneously
to effectively guard a shared spectrum system. E.g., a malware or virus-based attach-
ment could simultaneously cause many devices to violate spectrum allocation rules;
spectrum jamming attacks would typically involve multiple transmitters. More im-
portantly, a technique limited by the localization of a single intruder could then be
easily circumvented by an offender by using multiple devices. The key challenge in
solving the multiple transmitter localization (MTL) problem comes from the fact that
the deployed sensor would receive only a sum of the signals from multiple transmitters,
and separating the signals may be impossible.

Prior Works. The MTL problem has been recently addressed in a few prior works,
among which SPLOT [130], MAP [307|, and DeepTxFinder [331] are the most promi-
nent. SPLOT essentially decomposes the MTL problem to multiple single-transmitter
localization problems based on the sensors with the highest power readings in a neigh-
borhood. However, their technique implicitly assumes a propagation model, and thus,

34



Spectrum Manager Cloud

I‘ Spectrum Database DeepMTL Locations Predict TX Power ‘|
1

| I
i — _, TXy: (x1,91) TX,:powery :
|| TX>: (x2,¥2) TX,: power, ;
J

\

Sensing data
i.e. (x,y, RSS)

00%0@@
0™0 0 0 ™g

Crowd-sourced Sensors

Figure 3.1: Multiple transmitter localization using a distributed set of sensors. Sens-
ing data is uploaded to a spectrum manager server in the cloud. DeepMTL is a deep
learning approach to multiple transmitter localization which helps protect spectrum
against unauthorized usage. After that, the prediction of transmission powers hap-
pens using DeepMTL as a building block.

may not work effectively in areas with complex propagation characteristics, and it is
not effective in the case of transmitters being located close by (a key challenging
scenario for MTL problem). Our recent work MAP solves the MTL problem using a
hypothesis-driven Bayesian approach; in particular, it uses prior training in the form
of distributions of sensor readings for various transmitter locations, and uses the train-
ing data to determine the most likely configuration (i.e., transmitters’ locations and
powers) for a given vector of sensor readings. However, to circumvent the high com-
putational cost of a pure Bayesian approach, MAP uses a divide and conquer heuristic
which results in somewhat high number of misses and false alarms while still incurring
high latency. DeepTxFinder uses a CNN-based learning model approach; however,
they use a separate CNN model for a specific number of transmitters and thus may
incur high model complexity and training costs while also limiting the number of
transmitters that can be localized. In our evaluations, we compare our work with
each of the above approaches.

DeepMTL: Our Two-Step Approach. As in prior works [38, 130|, we assume a
crowdsourced sensing architecture (See Fig. 3.1) wherein relatively low-cost spectrum
sensors are available for gathering signal strength in the form of received power. We
use a convolutional neural network (CNN) based approach to solve the MTL problem.
In particular, we frame MTL as a sequence of two steps: image-to-image translation and
object detection, each of which is solved using a trained CNN model. The first step of
image-to-image translation maps an input image representing sensor readings to an
image representing the distribution of transmitter locations, and the second object
detection step derives precise locations of transmitters from the image of transmitter
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distributions. We name our MTL approach as DeepMTL.

Motivation. Our overall approach and its various aspects are motivated by the follow-
ing considerations. First, we use a learning-based strategy to preclude assuming a
propagation model [130] or conducting surveys of sensors reading distributions [307].
The assumption of the propagation model suffers from the fact that even sophisti-
cated propagation models yield unsatisfactory accuracy and thus lead to degraded
performance. Among all learning-based strategies, deep learning can implicitly cap-
ture the environment characteristics (e.g., objects, walls, landscape) in the neural
network layers’ weights learned through the training of the data [11]. Even though
a learning-based approach incurs a one-time high training cost, it generally incurs
minimal latency during inference, which is an important consideration for our MTL
problem. The intruder detection should incur minimal latency to be effective. Sec-
ond, the geographical nature of the MTL problem suggests that convolutional neural
networks (CNNs) are well-suited for efficient learning of the desired function. In
particular, the features of the MTL problem can be represented in an image (2D ma-
trix) corresponding to their geographic locations, which can be fed as an input to
an appropriate CNN model that can leverage the spatial correlation among the in-
put features to facilitate efficient learning. Lastly, we use a two-step architecture to
facilitate efficient training by essentially providing an additional intermediate image.
In particular, we are able to map each step to well-studied standard computer vision
problems, allowing us to build upon known techniques.

Overall Contributions. The goal of our work is to develop an efficient technique
for accurate localization of simultaneously present multiple transmitters/intruders.
We also extend our technique to address various extensions such as power estimation
and the presence of authorized users. Overall, we make the following contributions.

1. For the MTL problem, we develop a novel two-step CNN-based approach called
DeepMTL approach. For the first step of image-to-image translation, we develop
a CNN model that translates an image representing the sensor readings into an
intermediate image that encodes distributions of transmitter locations (Section
3.3). For the second step of mapping transmitter distributions to precision
locations via object detection, we customize the well-known object detection
method YOLOvV3 (Section 3.4).

2. For localization of transmitters in the presence of authorized users, we augment
the DeepMTL model by adding a pre-processing step based on a CNN-model
that first reduces the sensor readings by the power received from the authorized
users (Section 3.5).

3. To estimate the transmit power of the intruders, we augment our DeepMTL model
with a power-estimation CNN-model which iteratively estimates the power of
transmitters in sub-areas (Section 3.6).

4. We evaluate our techniques via large-scale simulations as well as small-scale
testbed data and demonstrate their effectiveness and superior performance com-
pared to the prior works (Section 3.7).
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A preliminary version of this paper appeared at IEEE WoWMoM 2021 [304].

3.2 Background, MTL Problem and Our Approach

In this section, we describe the background of the shared spectrum systems, formulate
the MTL problem, then describe our methodology.

Shared Spectrum System. In a shared spectrum paradigm, the spectrum is shared
among licensed users (primary users, PUs) and unlicensed users (secondary users,
SUs) in such a way that the transmission from secondaries does not interfere with
that of the primaries (or secondaries from a higher-tier, in case of a multi-tier shared
spectrum system). In some shared spectrum systems, the location and transmit power
of the primary users may be unavailable, as is the case with military or navy radars in
the CBRS band. Such sharing of spectrum is generally orchestrated by a centralized
entity called spectrum manager, such as a spectrum database in TV white space [131]
or a central spectrum access system in the CBRS 3.5GHz shared band [106]. The
spectrum manager allocates spectrum to requesting secondaries (i.e., permission to
transmit up to a certain transmit power at their location) appropriately so as to
avoid interference with primaries. Users who transmit without explicit permission
are referred to as unauthorized users or intruders; the MTL problem is to essentially
localize such intruders.

MTL Problem. Consider a geographic area with a shared spectrum. Without loss
of generality, we assume a single wireless frequency! throughout this paper?. For
localization of intruders, we assume available crowdsourced sensors that can observe
received signals in the wireless frequency of interest, and compute (total) received
signal strength (RSS). RSS can be measured using low-cost sensors and has been
shown to achieve good accuracy for single-transmitter localization [14]. In the related
work Section 3.8, we will discuss signal metrics other than RSS, such as AoA, ToA,
etc. At any instant, there may be a set of intruders present in the area with each
intruder at a certain location transmitting with a certain power which may be different
for different intruders.

The MTL problem is to determine the set of intruders with their locations at each
instant of time, based on the set of sensor observations at that instant. For the
main MTL problem, we assume that there are no primary or authorized users, and
thus, assume that the sensor readings represent aggregate received power from the
transmitters we wish to localize. However, in Section 3.5, we investigate the more
general MTL problem where the background primary and/or secondary users may also
be present.

!To avoid confusion with image channels, we use wireless frequency instead of the perhaps more
appropriate wireless channel term.

2Multiple wireless frequencies can be handled independently. Note that if we assume the wireless
propagation characteristics to be similar for different frequencies, then we do not need to train
different models for each of them. Our localization techniques would still work for scenarios wherein
the intruders may change their transmit frequencies dynamically.
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Figure 3.2: The overall two-step CNN architecture of the DeepMTL model. The first
step is the sen2peak, whose higher idea is to translate the input image of sensor
readings to the image of peaks where each peak implies a transmitter. The sen2peak
architecture is illustrated in Fig. 3.4. The second step is YOLOv3-cust, a customized
version of YOLOV3, to perform object/peak detection in the output image of the first
step. This step returns the precise location coordinates of TX. The YOLOv3-cust
architecture is illustrated in Fig. 3.5. A zoom-in of the peak detection result of the
second step is in Fig. 3.6.

Our Approach. In our context, each sensor communicates its observation to a cen-
tralized spectrum manager which then runs localization algorithms to localize any
potential (multiple) transmitters. We design and implement a novel two-step local-
ization algorithm named DeepMTL, as illustrated in Fig. 3.2, based on CNN models.
The first step (Section 3.3) is a four-layer image-to-image translation CNN model
that is trained to translate an input image representing sensor readings to an image
of transmitters’ locations distributions. FEach distribution of a transmitter can be
visualized as a mountain with a peak, so we name this model sen2peak. The second
step (Section 3.4), called YOLOv3-cust, is a customized object-detection method built
upon YOLOv3|215| which localizes the objects/peaks in the translated image. The
high-level motivation behind our two-step design is to frame the overall MTL problem
in terms of well-studied learning problem(s). The two steps facilitate efficient learning
of the models by supplying an intermediate image with the training samples.

3.3 DeepMTL Step 1: Sensor Readings to TX Location
Distributions

In this section, we present the first step of our overall approach to the MTL prob-
lem, i.e., the image-to-image translation step which translates/transforms the sensor
reading to distributions of TX locations. Here, we first create a grayscale image to
represent the input sensor readings; this image encodes both the sensors” RSS read-
ings and the sensors’ physical location. We then train and use a convolutional neural
network (CNN) model to transform this input image to an output image that repre-
sents the distribution of TX locations. Pixels in the output image that have higher
values will have a higher chance of having a TX being present at that location.
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Figure 3.3: Illustration of DeepMTL first step’s input and output images. (a) Area with
distributed sensors and transmitters to be localized. (b) Input image representing the
sensor readings (RSS) and locations. (c) Output Image, where we put a 2D Gaussian
distribution with its “peak" at the transmitter’s location.

Input/Output Image Sizes and Tiling Approach for Large Areas. We need
to represent data by images of certain sizes. Typically, an image should be a size of a
few hundred pixels by a few hundred pixels, since a thousand pixels by thousand pixels
images will consume too much GPU memory. In this chapter, we pick 100 x 100 as
the size for both our input and output images in the first image-to-image translation
step. Given an area that we want to monitor and a 100 x 100 size image, we will know
how large an area a pixel will represent and we call it a pixel subarea. A large pixel
subarea could certainly lead to high localization errors, due to very coarse granularity.
We can address this by using a “tiling" technique, wherein we divide the given area
into tiles, then represent each tile by 100 x 100 size image and use our localization
techniques in the tile. We can do some post-processing to handle cross-tiling issues
(e.g., [331] uses overlapping tiles and employs a voting scheme inside the overlapping
tile area).

3.3.1 Input Image Representing Sensors’ Readings

We localize transmitters based on observations from a set of sensors, i.e. solve the
MTL problem assuming only intruders. The input of the localization method is sensor
observations. Here, an observation at a sensor is the received power (RSS, in decibels)
over a time window of a certain duration, in the frequency of interest (we assume only
one wireless frequency). RSS is computed using FFT over the I/Q samples collected in
a time window. More specifically, in our evaluations, we use a Python API [120] that
computes the power spectral density from a sequence of signal data (I/Q samples),
and then, we choose the RSS at the frequency of interest. Different than [130, 307|, we
represent the sensor information, i.e., their locations and observations, in a 2D input
image. We use a 2D grayscale image and let us denote it X. The pixel Xj;; denotes
the observation of the sensor at the grid cell whose index is (7,7). For example,
X020 = —50 denotes there is a sensor at coordinate (10,20) with an RSS reading of
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—50 dB. If there is no sensor at location (i, j), we assign the noise floor N (i.e. -80 dB)
value to Xj;;. Note that the above pixel values (representing the sensor observations)
are not the standard image pixel values that lie in the [0, 255] range. Also, since the
path loss computed by propagation models during simulations could be real numbers,
the sensor observation values could be real numbers. So we use a 2D matrix with real
numbers instead of an image object.

Before passing this sensor reading image as input to our CNN model, we do a
normalization step; we first subtract the A from each value and then divide it by
~N/2. Let X' denote the 2D matrix after the normalization of X. The value X;J
will be zero at locations without sensors, and X;J will be a positive real number (in
most cases, less than two) for locations with sensors. E.g., if X990 = —50, then
the X' 1990 equals to (—50 — (—80))/40) = 0.75. Fig. 3.3 (b) shows how a matrix is
used to represent the input information that contains both the RSS and the spatial
location of the distributed sensors in an area that exists 14 sensors in Fig. 3.3(a).

3.3.2 Output Image Representing TX locations’ Distributions

We now focus on designing the output image to represent the distribution of TX
locations; the output image is essentially the “label" assigned to each input image
that guides the training of the CNN model. Fig. 3.3(c) illustrates the output image
of the image-to-image translation step in Fig. 3.3(a) that contains three transmitters.

A straightforward representation that represents the TXs with locations is to just
use an array of (z,y) elements where each (z,y) element is the location of a trans-
mitter, as in [331]. However, this simple representation is less conducive to efficient
model learning, as the representation moves away from spatial representation (by rep-
resenting locations as positions in the image) to direct representation of locations by
coordinate values. E.g., in [331]’s CNN-based approach to MTL problem, the authors
assume a maximum number N of transmitters and train as many as N + 2 differ-
ent CNN models and thus, limiting the overall solution to the pre-defined maximum
number of transmitters. Instead, in our approach, we facilitate the learning of the
overall model, by solving the MTL problem in two steps, and in this step of translating
sensors’ reading to transmitter locations’ distributions, we represent the output also
as an image. This approach allows us to use a spatial learning model (e.g. CNN) for
the second step too, and preclude use of regression or fully-connected layers in the
first step.

Inspired by recent work on wireless localization problem [11] that represents the
input and output as images, we represent our output of the first step as an image
as well. The output image is a grayscale image implemented as a 2D matrix with
real numbers. In the output image, we use 25 (5 x 5) pixel values to represent the
presence of a transmitter. It is desirable to use an odd side length square (e.g., 3 X 3,
5 x5, 7 x 7) for symmetry. For a 100 x 100 size input we use, while 3 x 3 gives too
little information for a transmitter and 7 x 7 generates too many overlaps for close by
transmitters, 5 X 5 is the sweet spot. Other pixels far away from any transmitter are
zero-valued. Among multiple potential ways to represent a transmitter presence by
a number of pixels, we found that using a 2D Gaussian distribution around the pixel
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Figure 3.4: Architecture of the first step CNN, a four layer image-to-image translation
model (sen2peak). The figure displays how the data volume flows through the various
convolutional layers. C stands for Conv2d, and for each Conv2d layer, the five values
shown are [number of input channels, number of output channels, kernel size, stride,
padding|. G stands for group normalization, and, for each group normalization, the
two values shown are [number of groups, number of channels|. See §3.3 for details.

of TX location, as shown in Fig. 3.3(c), yields the best model performance. Thus, a
geographic area with multiple transmitters present is represented by a grayscale image
with multiple Gaussian distributions, with each Gaussian distribution’s peak inside
the pixel corresponding to transmitter’s location. Based on preliminary performance
tests, we pick the amplitude of the 2D Gaussian peak to 10, the standard deviation
to 0.9, and located the center of the distribution at the location of each transmitter.
Note that the location of the TX is in the continuous domain and usually not at the
center of the grid cell.

3.3.3 Image-to-Image Translation: sen2peak CNN Model

At a higher level, we use a deep and spatial neural network, in particular a CNN; to
learn the approximation function that maps the input image (of sensor readings) to
the output image (of Gaussian distributions for TX locations). We refer to this as the
image-to-image translation model. Our approach is inspired by the recent work [11]
that frames a different wireless localization problem as an image-to-image translation
problem. We incorporate the idea into our multiple transmitter localization prob-
lem and utilize recent advances in the computer vision area. Encoder-decoder based
CNN models like U-Net [220] with down-sampling and up-sampling convolutional lay-
ers have been successful in effectively learning image-to-image translation functions.
However, in our setting, we observe that the usage of down-sampling layers (such
as max-pooling) degrades the performance of the model, especially in the case when
transmitters may be close to each other wherein the model is unable to distinguish the
nearby transmitters and generate a single large distribution in the output image. To
circumvent this, we avoid using any down-sampling layers in our model and redesign
the image-to-image translation model as described below.

sen2peak CNN Model. We refer to our image-to-image translation CNN model as
sen2peak, as it translates sensors’ readings to “peaks" with Gaussian distributions
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corresponding to transmitter locations. It has four 3 convolutional layers, as shown
in Fig. 3.2(a). We use an input size of 100 x 100. The number of convolutional filters
varies for different layers, with up to 32 in one of the layers. We tried doubling the
filter numbers at each layer, but it did not lead to significant improvement (it does
yield a lower error, but the output image does not improve significantly to impact
the second step of our architecture). We use a kernel size of 5 x 5, a stride of 1,
and a padding of 2. This ensures that the dimensions do not decrease and all the
pixels are treated uniformly, including the ones at the edge of the image. With the
above four convolutional layers, the receptive field [166] of each neuron in the output
layer is 17 x 17. Normalization layers can improve the learning process. We chose
group normalization [279] and put it after the first three convolutional layers. We
compared group and batch normalization [121] methods in our context and observed
better performance with the group normalization. For the activation layers, we select
the rectified linear unit (ReLU) and put it after the group normalization layers.

The Loss Function. Our inputs (X) and output (Y) are images. We use the L2 loss
function which computes the mean squared error aggregated over individual pixels.
More formally, our loss function is defined as:

N
1
3" llsenzpeak(X;) - Vil (3.1)

where N is the number of samples used in computing the loss, || - ||* is the L2 loss
function, X; and Y; are the iy, sample’s input and output images respectively, and
sen2peak(X;) is the predicted output image corresponding to the input X;. During
training, we use Adam [133] as the optimizer that minimizes the loss function. We set
the learning rate to 0.001 and the number of epochs to 20 and the model converges
well.

3.4 DeepMTL Step 2: TX Locations’ Distributions to
Precise Locations

In this section, we present the second step of our overall localization approach. We re-
fer to this step as the peak detection step, as the goal is to detect the peaks within the
Gaussian distributions in the input image (which is also the output image of the first
step). The first step outputs an image that has multiple distributions (presumably,
Gaussian), whose peaks need to be interpreted as precise locations of the transmit-
ters/intruders. As, our end goal is to determine the precise locations of the present
transmitters, we develop techniques to detect peaks within the output image of the
first step. We propose two different strategies for the peak-detection task. The first
strategy is a straightforward peak detection algorithm based on finding local maximal

3We observe that a four-layer lightweight and symmetric sen2peak model produces good results
and adding more layers gives marginal improvement.
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Figure 3.5: Our YOLOv3-cust in the second step of the DeepMTL. The two major
customizations are: (i) Use only the third YOLO layer that detects small-size objects
(the output of YOLOv3-cust is the bounding box predicted by the third YOLO layer
and we use the center of the bounding box as the transmitter location), and (ii)
change the rectangle anchors to square anchors.

values, while the second strategy is based on framing the problem as an object detec-
tion task; for the second strategy, we utilize a widely used state-of-the-art computer
vision model called YOLOvV3 [215].

Simple Peak Detection Method. The simple and straightforward peak detection
method is to designate pixels with locally maximal values as peaks, subject to certain
thresholds. More formally, we use a threshold x for a peak value and also use a
parameter r to define a r-radius neighborhood of a pixel. Then, any pixel whose value
is more than x and is the maximum among all pixels with a r-radius neighborhood,
is designated as a peak (transmitter location). We use x = 2 and r = 3, in our
evaluations. Note that each pixel represents a subarea; thus, a pixel designated as
pixel only implies the transmitter location at the center of the corresponding subarea.
To localize the transmission more precisely with the pixel’s subarea, we use a scheme
that localizes the transmitter within the subarea by computing a weighted average of
the peak pixel’s coordinate and the peak’s neighbor pixels’ coordinates. The weight
of a pixel is the predicted pixel value itself from the first step sen2peak. We refer to
the above simple approach for the second step of DeepMTL as simplePeak.

3.4.1 Object-Detection Based Precise Localization: YOLOv3-cust

The simple hand-crafted method described in the previous subsection performs rea-
sonably well in most cases in our simulations. However, its key drawback is that it
needs appropriate threshold values that may vary from case to case; such thresholds
can be difficult to determine, especially since the input images (with distributions)
are not expected to be perfect as they are themselves the output of a learning model.
Inaccurate threshold values can lead to false alarms and misses. Also, the previous
method is not sufficiently accurate at the sub-pixel level, where each pixel may rep-
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Figure 3.6: (a) is the zoom-in of two peaks at the bottom of the Fig. 3.2 example. (c)
is the zoom-in of the two close-by peaks in the middle right of the Fig. 3.2 example.
(b) and (d) shows the bounding boxes that YOLOv3-cust outputs for (a) and (c)
respectively.

resent a large area such as 10m x 10m or even 100m x 100m. Thus, we propose a
CNN-based learning method that overcomes the above shortcomings. CNN has been
widely used for object detection in different areas [6, 160].

We frame this problem as an object detection task where the objective is to detect
and localize known objects in a given image. We observe that our second-step peak
detection problem is essentially an object detection problem where the “object" to
detect is a “peak". Thus, we turn the MTL problem of localizing multiple transmitters
into detecting peaks in the images output by sen2peak model. For object/peak
detection, we design YOLOv3-cust, our customized version of YOLOv3 [215]. Fig. 3.6
is a zoom-in of localizing two close-by transmitters (peaks) in Fig. 3.2(b).

Peak Detection Using YOLOv3-cust. Object detectors are usually comprised of two
parts: (i) a backbone which is usually pre-trained on ImageNet, and (ii) a front
part (head), which is used to predict bounding boxes of objects, probability of an
object present, and the object class. For the front part, object detectors are usually
classified into two categories, i.e., one-stage detectors such as the YOLO [214] series,
and two-stage detectors such as the R-CNN [97]| series. We choose the one-stage
YOLO series because of its computational efficiency, high popularity, and available
ways to customize it for our specific context. We refer to the customized version as
YOLOv3-cust, see Fig. 3.5. Implementing a 106-layer deep neural network with a
complex design from scratch is out of the scope of our work. Thus, we use a publicly
available source repository [158] and made customization on top of it. We refer to
the architecture that uses sen2peak and YOLOv3-cust in sequence as DeepMTL, our
key product. In addition, we use sen2peak in combination with the uncustomized
original YOLOV3, and refer to it as DeepMTL-yolo (still change the class number to
one).

Customization of YOLOv3. Overall, we incorporated four customizations to YOLOv3,
of which two are significant and the other two are relatively minor. See Table 3.1.
YOLOvV3 is designed to be a general object detector that can detect objects of various
sizes, shapes, and classes within input images of various sizes. However, in our con-
text, the input images are of a fixed size, with only a single class of objects which are
relatively small and semi-circular. Based on the above observations, we make changes
to the original YOLOv3 that both decrease the model complexity and improve its
performance.

Clustomization Details. The first and second changes presented in Table 3.1 are
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Table 3.1: Differences between the original YOLOv3 and our YOLOv3-cust.

[YOLOV3

‘YOLOVS—cust

|

Has three YOLO layers at 13x 13,
26 x 26, and 52 x 52 for detection

Only use the last 52 x 52 YOLO
layer for detection (skip the first
two YOLO layers)

Has 3 different rectangle anchors
for each YOLO layer

Has 3 square anchors

Every 10 batches, randomly
choose a new input image dimen-
sion size

Do not randomly choose new in-
put dimension size

Has 80 different categories of ob-
ject class

Only has one category for the
peak class

major changes and we elaborate on them in the following paragraphs. Making predic-
tions at three different scales is one of the highlights of YOLOv3 and an improvement
compared to the previous version YOLOv2 which was prone to missing at detecting
small objects. As shown in Fig. 3.5, the coarse-grain 13 x 13 YOLO layer-1 is designed
for detecting large size objects, the 26 x 26 YOLO layer-2 is designed for detecting
middle-sized objects, and the fine-grained 52 x 52 YOLO layer-3 is designed for de-
tecting small-sized objects. Since the peaks in our translated images are always small
objects, we only use the last 52 x 52 YOLO detection layer (and skip the first two
YOLO layers). As shown in Fig. 3.5, by “skipping" the two YOLO layers means that
we do not use them in computing the overall loss function and their outputs are not
used in predicting the bounding boxes. In our YOLOv3-cust, the only YOLO layer
predicts 8112 bounding boxes, since it has a dimension of 52 x 52 and each cell results
in the prediction of 3 bounding boxes; this is in contrast to the original YOLOv3,
which predicts 10647 bounding boxes (3 x (13 x 13 + 26 x 26 + 52 x 52) = 10647).

The anchor box is one of the most important hyperparameters of YOLOv3 that
can be tuned to improve its performance on a given dataset. The original YOLO’s
anchor boxes are 10 x 13, 16 x 30, and 33 x 23 (for the input image of size 416 x 416
pixels), which are essentially bounding boxes of a rectangular shape. These original
YOLOvV3 anchors were designed for the Microsoft COCO [157] data set and were
chosen since they best describe the dimensions of the real-world objects in the MS
COCO data set. In our context, since the peaks are generally squares—we use the
anchor boxes to be 15 x 15, 25 x 25, and 35 x 35.

Input Image for YOLOv3-cust. The first step sen2peak’s output image is 100 x 100,
while the second step YOLOv3-cust’s input is required® to be a three-channel (RGB)
image with each channel being a size of 416 x 416. To feed the output of sen2peak
to YOLOv3-cust, we do the following: (i) First, we duplicate the sen2peak’s output

4YOLOV3 was developed before our work and the YOLOv3 authors set the input size of the CNN
model to 3 x 416 x 416. Although we are customizing their YOLOv3 model, we cannot change the
input size because changing it will change the convolutional layer structure, which will preclude us
from using the pre-trained weights in the YOLOv3 backbone.
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Figure 3.7: The data processing of sen2peak’s output to get YOLOv3-cust’s input of
correct size.

image to create two more copies and thus create a three-channel image of 100 x 100
size channels; (ii) Next, we resize the 100 x 100 channels to 416 x 416 channels using
the PyTorch’s default “nearest neighbor" interpolation. See Fig. 3.7.

Output of YOLOv3-cust. YOLO treats object detection as a regression problem. The
regression target (or “label") for an object is a five-value tuple (z, y, length, width, class).
In our case, there is only one class. x and y are real number location coordinates
of the center of the bounding box, which we use as the location of the transmitter.
Width and height determine the size and shape of the object—which we consistently
set to be 5 each to signify a 5 X 5 square. Note that the center of the bounding box
is in the continuous domain. Thus, we are able to get the sub-pixel level location of
the transmitters.

3.5 Localization in the Presence of Authorized Users

Till now, we have assumed that the only transmitters present in the area are the
intruders which need to be localized. In this section, we solve the more general MTL
problem, where there may be a set of authorized users in the background. This
is referred to as the multiple transmitter localization - shared spectrum (MTL-SS)
problem [307].

In particular, in a shared spectrum paradigm, there are primary users and an
evolving set of active secondary users transmitting in the background. Different than
the intruders whose locations are unknown, the authorized users’ locations are known
and we wish to utilize this known information to better localize the unknown intrud-
ers. The key challenges come from the fact that the set of authorized users is not static
and changes over time as allocation requests are granted and /or active secondary users
become inactive over time. A straightforward way to handle background authorized
users is to localize every transmitter, and then remove the authorized users. However,
any localization approach is susceptible to performance degradation with the increase
in the number of transmitters to be localized. Thus, the straightforward approach
of localizing every transmitter is likely to be error-prone. Therefore, we attempt to
develop a new approach that uses DeepMTL as a building block that uses the infor-
mation of the location of the authorized uses in a way other than removing them
after localizing all. The new approach tries to subtract the received signal strength
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Figure 3.8: Overall architecture of the second approach to localize 3 intruders in the
presence of 5 authorized users. The input of the SubtractNet is (c), which is stacking
authorized user matrix (a) and the sensor reading matrix (b). (d) is the output of
SubtractNet, where the transmission power of the authorized users is subtracted
from the area. The details of the SubtractNet model is in (e). (f) is the localization
output after feeding (d) into DeepMTL.

at the sensors by a value received from the authorized users. This subtraction is
done by a novel CNN model; we refer to it as SubtractNet. Then we feed the image
with subtracted powers to the DeepMTL and get the locations of the intruders. See
Fig. 3.8(c)—(d)—(f). We describe SubtractNet in the following paragraphs.

SubtractNet Input Image. The sensor reading has two sources, one is the intruders
and the other is the authorized users. We aim to subtract the power of the authorized
users and retain the power from the intruders. So the input of the SubtractNet will
contain two kinds of information: the authorized users’ information (Fig. 3.8(a)),
including both the location and the transmitter power, and the sensor reading matrix
(Fig. 3.8(b)) that encode the power from all transmitters. To incorporate the two
kinds of information, we first encode the authorized user information into a matrix
that has the same dimension as the sensor reading matrix. Then stack the two
matrices together. The combined stacked image is nothing but a two-channel image,
which can be interpreted as Red and Green channels. The sensor reading matrix
is the Red channel and the authorized user matrix is the Green channel. There
is no Blue channel. To represent the authorized transmitter in the Green channel,
we use a Gaussian peak similar to what we did in the sen2peak for representing
transmitters (Section 3.3). The difference is that in sen2peak, all the peaks have
a uniform height, whereas in SubtractNet, the height of the peak is the power of
the authorized transmitter. So the higher the power of the authorized transmitter,
the higher the peak in the Green channel. Another difference is that the authorized
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transmitters are approximated at discrete locations instead of the continuous locations
as in sen2peak.

SubtractNet Output Image. The SubtractNet’s output image is just a one-channel
image and represents the sensor readings due to the intruders only.

SubtractNet CNN Architecture. We refer to the model that subtracts the power
from the authorized users as the SubtractNet. It has a similar design philosophy
with sen2peak. SubtractNet is also an image-to-image translation neural network.
Compared to sen2peak, it doubled the number of layers, mainly because SubtractNet
needs a bigger receptive field than sen2peak. A bigger receptive field can let the CNN
model update sensors that are further away from the authorized user. For the loss
function, we use the L2 loss function, similar to the loss function used in Equation 3.1,
merely replacing the sen2peak with SubtractNet in Equation 3.1. The training
details are also the same as in sen2peak.

3.6 Estimating the Transmit Power of Transmitters

In this section, we extend our techniques to estimate the transmit power of the in-
truders; we refer to the overall problem as Multiple Transmitter Power Estimation
(MTPE). Estimation of the transmit power of transmitters can be very useful in shared
spectrum systems. In particular, estimated transmit powers of the primary users (if
unknown, as in the case of military users or legacy systems) can be used to set a “pro-
tective" region around them—inside which secondary users can be disallowed [247].
Estimating the transmit power of secondary users can also be useful. E.g., if the
violation in a shared spectrum system is based on a certain minimum threshold,
then it is important to estimate the transmit power to determine a violation. Also,
the estimated transmit power of secondary users can be used to “circumvent" their
intrusion—i.e., for the primary users to appropriately increase their transmit power
to overcome the harmful interference from the secondary users. In general, estimating
the transmission power is beneficial to various operations such as node localization,
event classification, jammer detection [301].

There are several works that estimates the transmission power of a single trans-
mitter, often jointly with its location [132, 247, 301]. Our previous work [307| can
estimate the power of multiple transmitters. The similarity among all four of these
methods is that they estimate the power and location jointly. In this chapter, we
propose a new method that leverages the capabilities of DeepMTL by using it as a
building block. We first localize the transmitters by DeepMTL. Then given the lo-
calized locations, estimate the transmitters’ transmission power by a newly designed
CNN model PredPower. Although PredPower is designed to only estimate the power
of a single transmitter, we use it together with a machine learning-based error correc-
tion method that can mitigate the errors while applying PredPower to the multiple
transmitter power estimation scenario.

In this section, we develop a technique to predict the transmission powers of the
intruders. Here, for simplicity, we assume no background authorized users, though,
the techniques in this section also work in the presence of authorized users. We lever-
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age our accurate and robust localization solver that tolerates varying transmission
power for different transmitters (the varying transmission power needs to be in a
range). We propose an efficient approach and its overall methodology at a high level
is as follows. And then in the next subsection, we describe our PredPower model.

1. We use DeepMTL to localize the multiple transmitters in a field.

2. We develop a CNN model PredPower to predict the power of a single isolated
(far away from other intruders) intruder.

3. For other (non-isolated) intruders, we still use PredPower to predict their pow-
ers but employ a post-processing “correction" technique to account for nearby
intruders.

3.6.1 PredPower: Predicting Power of a Single Isolated TX

PredPower Input Image. Let us consider an “isolated" transmitter 7. To predict T"s
power, we start with creating a smaller-size image by cropping the original sensor
readings image with the area of a certain size around T'. In our evaluations in Section
3.7, the transmitters have a transmit radius® of around 20 pixels, which is equivalent to
200 meters.® For this setting, we used a cropped area of 21 x 21 around the isolated
transmitter T to predict its power, with T at the center of this area; also, in this
setting, we define a transmitter to be isolated if there is no other transmitter within
a 20-pixel distance.” Note that the above cropping process requires the location of
the transmitter to be known, and hence, we undertake the above power-estimation
process after the localization of the transmitters using the DeepMTL model. We crop
images from the same dataset where DeepMTL is trained on.

PredPower Output Power. The output of the PredPower is a single pixel whose value
is the predicted power of the transmitter located at the center of the cropped image.
Before coming into this single pixel output design, we tried using the height or radius
of the peak from the output of sen2peak to indicate the power. But we figured out
that the height or radius of the peak is hard to accurately predict and therefore is
not an accurate indicator of the power. So we reduced the output complexity and
designed the output as a simple single pixel whose value directly represents the power
of the transmitter. By simplifying both the input side and output side, we can design
and implement a novel CNN model that can accurately predict the power of a single
transmitter, as described in the following paragraph.

°Le., sensors beyond a distance of 20 pixels away from a transmitter = receive only negligible
power from z.

6Transmission ranges of a standard 2.4 GHz and 5 GHz WiFi at default transmission powers (100
mW) are roughly 45m and 15m respectively. In our simulations (Section 3.7), we use the 600 MHz
frequency band. As the lower the signal frequency, the higher the transmission range, a transmission
range of around 200m is reasonable.

"Ideally, transmitters with a transmit radius of 20 pixels should entail defining isolated trans-
mitters as ones that have no other transmitters within a 40-pixel distance, and then use a 41 x 41
area around the isolated transmitter. However, in our evaluations, our chosen values yielded a more
efficient technique with sufficient accuracy.
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Figure 3.9: Architecture of the PredPower, a five-layer CNN model that takes in
a cropped image from the original input image and outputs the predicted power of
one transmitter. The figure displays how the data volume flows through the various
convolutional layers. C stands for Conv2d, a 2D convolutional layer, and for each
Conv2d layer, the five values shown are [number of input channel, number of output
channel, kernel size, stride, padding]. B stands for batch normalization 2d, and for
each batch normalization, the value shown is [number-of-features].

PredPower CNN Architecture. We refer to our CNN model that estimates the power
of a single transmitter as PredPower. See Fig. 3.9. It has a similar design to sen2peak
as well, where it has no max-pooling layers and no fully connected layers. We do
not use the fully connected layers and design a fully convolutional network since
the usage of fully connected layers will destroy the spatial relationships. PredPower
has five CNN layers and each CNN layer has a kernel size 5 x 5, striding 1 and
padding 0. With this setting, a pixel in the output layer has a receptive field of
21 x 21, which is exactly the size of the input cropped image. Also note that the
pixel is exactly at the location where the transmitter is assumed to be located (recall
that the transmitter is at the center of the cropped image). We tried both batch
normalization and group normalization and found that batch normalization is better
than group normalization, which is the opposite to the sen2peak scenario. ReLU is
used as the activation function.

Loss Function. The output of the last convolutional layer is technically a 3D cube,
although 1 x 1 x 1. So we flatten it in the end to get one scalar value. We use a L2
loss function, which is formally defined as:

N
1
N Z(PredPower(Xf) — i), (3.2)

where N is the number of training samples, X{ is the cropped input image for the
i" sample and y; is the ground truth power for the i'" sample. PredPower(XY) is the
predicted power. We use Adam as the optimizer and set the learning rate to 0.001
and the number of epochs to 20, which is sufficient for the model convergence.

3.6.2 Estimating Powers of Multiple Transmitters

Our end goal is to estimate the power of multiple transmitters at the same time. When
the multiple transmitters are far away and isolated from each other, the problem
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reduces to single transmitter power estimation, which PredPower handles well. The
hard part is to estimate the transmit powers of multiple transmitters that are close
by. In this case, a sensor will receive an aggregated power from multiple transmitters.
We assume that blind source power separation is not viable.

Overall High-Level Approach. For each localized intruder by using DeepMTL (whether
isolated or not), we crop the 21 x 21 size area around it and feed it to PredPower,
and estimate its power. If it is actually isolated, then the predicted power is final. If
it is not isolated, then we apply a post-processing correction phase to account for the
overestimation of the powers, as described below.

Correction Method for Close by Transmitters. Let us first consider the case where
there are two close-by transmitters 7y and 77;. We use PredPower to estimate the
power of two transmitters and get pé) and p| respectively. Let us say the ground truths
are po and p; respectively. The estimated power will most likely be higher than the
ground true power, i.e., pg > po and p'1 > p;. Because PredPower can only “see" one
transmitter, it will view two transmitters in the areas as a combined single one. Let
us focus on T and assume dy = pé] — po. The intuition is that dy has some underlying
patterns that we are able to recognize. We model dy as a function of some features
related to Ty and T7. We model §y as follows,

’ ’ pl
0o = 0o - py + 01,1y - dor + 02 - 0y +013) - L

= (3.3)

where dy; is the distance between T and 77, and the four s are the coefficients for
the four terms respectively. The first term is related to Tj itself, and the other three
terms are related to 77. We observe that the smaller the dy;, the larger the value of
So. And the bigger the p;, the larger the value of ;. So do; has a negative correlation
with 0y while p1 has a positive correlation. 5—11 is a combination of two terms to
increase the number of features. We also tried a few other features, but we decided to
use only these three features for a close-by transmitter as a balance of model accuracy
and model complexity.

Equation 3.3 is for the case of one close-by transmitter, we then extend the equa-

tion to handle multiple close-by transmitters in the following Equation 3.4,

o

o (3.4)

dg = 0 - po—i—z (i,1) - doi + 02 - pz+923)
=1

where m is the number of close by transmitters for Ty, the transmitter of interest, dy;
is the distance between T and close by T;, and p; is the uncorrected power predicted

by PredPower. For the ith close by transmitter, we introduce three terms dy;, p;, %,
and assign three coefficients 0; 1y, 0(; 2), 0(;,3) to the three terms respectively. So for m
close by transmitters, there are 1 4+ 3m number of terms in the Equation 3.4.

After modeling dy, in Equation 3.5, we “correct” pz) by subtracting &y from pé) to
get a more accurate estimation of the power of transmitter 7.

pgow’ect ;)_ 50 (35)
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Estimating the parameter . Equation 3.4 is essentially a linear model and we can
train it by using either linear, ridge, or LASSO regression models [204]. We perform
experiments using ridge regression (alpha=0.01). We set a distance threshold for
a neighbor transmitter to be classified as a close by transmitter. Note that the
transmitters will have a different number of close by transmitters. So, let us denote
M as the maximum number of close-by transmitters we see in the dataset. When
training the linear model in Equation 3.4, we train a model that assumes a maximum
M number of close-by transmitters, i.e., the linear model has 1 + 3M terms. The
3M terms are organized in a group of three (i.e., three features) and the groups are
sorted by distance in ascending order. Then, for a transmitter with a smaller than M
number of close-by transmitters, let us say m, only the first 1 + 3m terms will have
a meaningful value. And for the rest 3(M — m) terms, we set the value to zero, i.e.,
impute the missing value with zero.

3.7 Evaluation

To evaluate the performance of our proposed techniques, we conduct large-scale sim-
ulations over two settings based on two different propagation models. In particular,
we consider the log-distance-based propagation model and the Longley—Rice model
obtained from SPLAT! [179]. We evaluate various algorithms, using multiple perfor-
mance metrics as described below.

Performance Metrics. We use the following metrics 1, 2, and 3 to evaluate the lo-
calization methods and use the 4th metric to evaluate the power estimation methods.

1. Localization Error (Ley)
2. Miss rate (M,)

3. False Alarm rate (F,)

4. Power Error (Pey)

Given a multi-transmitter localization solution, we first compute the L. as the
minimum-cost matching in the bi-partite graph over the ground truth and the so-
lution’s locations, where the cost of each edge in the graph is the Euclidean distance
between the matched ground truth node location and the solution’s node location.
We use a simple greedy algorithm to compute the min-cost matching. The unmatched
nodes are regarded as false alarms or misses. We also put an upper threshold on the
cost (Lerr) of an eligible match. E.g., if there are four intruders in reality, but the al-
gorithm predicts six intruders then it is said to incur zero misses and two false alarms,
so the M, is zero and the F, is one-third. If the algorithm predicts three intruders
then it incurs one miss and zero false alarms, so the M, is one-fourth and the F, is
zero. In the plots, we stack the miss rate and false alarm rate to reflect the overall
performance.
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Algorithms Compared. We implement® and compare six algorithms in two stages.
In stage one, we compare three versions of our techniques, viz., DeepMTL, DeepMTL-yolo,
and DeepMTL-peak. Recall that DeepMTL, DeepMTL-yolo, and DeepMTL-peak use
sen2peak in the first step, and YOLOv3-cust, original YOLOv3, and simplePeak re-
spectively in the second step. In the first stage of our evaluations, we will show that
DeepMTL outperforms DeepMTL-yolo and DeepMTL-peak in almost all performance
metrics. Thus, in the second stage, we only compare DeepMTL with schemes from
three prior works, viz., SPLOT [130|, DeepTxFinder [331], and MAP [307] and show
that DeepMTL outperforms the prior works.

Training and Testing Dataset. We consider an area of 1km x lkm, and use
grid cells (pixels) of 10m x 10m, so the grid is 100 x 100. The transmitters may
be deployed anywhere within a cell (i.e., their location is in the continuous domain),
while the sensors are deployed at the centers of the grid cells (i.e. their location is in
the discrete domain). For each instance (training or test sample), the said number
of sensors and transmitters are deployed in the field randomly. For each of the two
settings (propagation models described below), we create a 100,000 sample training
dataset to train our models and create another 20,000 sample testing dataset to
evaluate the trained model.

We will evaluate the performance of various techniques for a varying number of
transmitters/intruders and sensor density. When we vary a specific parameter, the
other parameter is set to its default value; the number of transmitters varies from 1
to 10 and the default value is 5; the sensor density varies from 1% to 10% and the
default value is 6% (600 sensors in a 100 x 100 grid). The two default numbers 5 and
6% are chosen because they are in the middle of their ranges. When not mentioned,
the default values are used. The transmitter power varies from 0 to 5 dBm and is
randomly picked. To minimize overfitting, the training dataset and testing dataset
have sensors placed at completely different locations.

We train the DeepMTL model using the 100,000 sample dataset. To train the
DeepTxFinder [331], we partition the 100,000 sample training dataset into ten datasets
based on the number of transmitters in the samples which varies from 1 to 10. These
ten datasets are used to train the ten “localization" CNN models in DeepTxFinder,
and the full dataset of 100,000 samples is used to train the DeepTxFinder model that
determines the number of transmitters. For the MAP scheme [307], we assume the
availability of all required probability distributions. We note that using a simple cost
model (number of samples need to be gathered), the overall training cost for MAP is
an order of magnitude higher than DeepMTL and DeepTxFinder. Lastly, SPLOT [130]
does not require any training.

Two Propagation Models and Settings. The sensor readings (i.e. the dataset)
are simulated based on a propagation model [292|. To demonstrate the generality of
our techniques, we consider two propagation models as described below.

Log-Distance Propagation Model and Setting. Log-Distance propagation model is a
generic model that extends Friis Free space model which is used to predict the path
loss for a wide range of environments. As per this model, the path loss (in dB)

8Source code at: https://github.com/caitaozhan/deeplearning-localization.
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between two points x and y at a distance d is given by: PLy; = 10alogd + X', where
a (we use 3.5) is the path-loss exponent and X represents the shadowing effect that
can be represented by a zero-mean Gaussian distribution with a certain (we use 1)
standard deviation. Power received (in dBm) at point y due to a transmitter at point
x with a transmit power of P, is thus: P, — PL;. Power received at point y due to
multiple sources is assumed to be just an aggregate of the powers (in linear) received
from each of the sources.

SPLAT! Model and Setting. This is a complex model of wireless propagation based
on many parameters including locations, terrain data, obstructions, soil conditions,
etc. We use SPLAT! [179] to generate path-loss values. SPLAT! is an open-source
software implementing the Longley-Rice [42] Irregular Terrain With Obstruction
Model (ITWOM) model. We consider a random area in Long Island, New York of
1km x 1km large and use the 600 MHz band to generate path losses.

— 1 p——___ i -

™

a

L

c 0.8

2

o

S

2 0.6

=

e

2

[a]

p 0.4

2

E —— DeepMTL

E 0.2 —— DeepMTL-yolo

a DeepMTL-peak
% 2 a 6 8 10 12

Localization Error (m)

Figure 3.10: Cumulative probability of localization error of DeepMTL, DeepMTL-yolo
and DeepMTL-peak, for the special case of single transmitter localization with 6%
sensor density.

3.7.1 DeepMTL vs. DeepMTL-yolo vs. DeepMTL-peak

In this subsection, we compare the three variants of our technique, viz., DeepMTL,
DeepMTL-yolo, and DeepMTL-peak. For simplicity, we only show plots for the log-
distance propagation model setting in this subsection (we observed similar perfor-
mance trends for the Longley-Rice propagation model too).

Performance Results. In Fig. 3.10, we plot the cumulative density function (CDF) of
the localization error, for the simple case of a single transmitter. We observe that
DeepMTL outperforms the other variants, as it yields a higher cumulative probability
for a lower range of errors. In addition, we evaluate the three variants for varying
number of transmitters (Fig. 3.11) and sensor density (Fig. 3.12), and evaluate the
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Figure 3.11: (a) Localization error and (b) miss and false alarm rates, of DeepMTL,
DeepMTL-yolo and DeepMTL-peak variants for varying number of transmitters in log-
distance dataset (propagation) model.

localization error as well as the false alarm and miss rates. We observe that DeepMTL
consistently outperforms the other two variants across all plots and performance met-
rics. As expected, the performance of all algorithms degrades with an increase in the
number of transmitters (in terms of false alarms and miss rates) or with a decrease in
sensor density. In general, the localization error of DeepMTL is around 15-30% lower
than the other variants. Impressively, the total cardinality error (i.e., false alarms
plus miss rates) is fewer than 1% for the DeepMTL technique, when the sensor density
is 6% or above.

When the sensor density is as low as 1%, the performance of all methods signif-
icantly decreases. Because when the sensor density is 1% or lower, the input image
will be very sparse and contain only a few pixels. DeepMTL’s first part sen2peak has a
receptive field of 17 x 17. This area will contain an average of less than three sensors
when the sensor density is 1% (17 x 17 x 0.01 = 2.89). This number is considered
too low and note that 2.89 sensors are not enough for the trilateration localization
method, which needs three sensors. Our CNN models need to function well with
enough pixels that contain useful information. So we suggest the sensor density to be
at least 2% to achieve reasonable results.

Table 3.2: Compare Localization Running Time (s) for 1 to 10 Number of Intruders

Intru. DeepMTL-peak DeepMTL-yolo DeepMIL MAP SPLOT DeepTxFinder

1 0.0013 0.0180 0.0180 8.78 1.53 0.0015
3 0.0014 0.0183 0.0186 15.1 1.79 0.0016
5 0.0016 0.0192 0.0189 19.3 2.06 0.0017
7 0.0018 0.0196 0.0194 241 2.32 0.0019
10 0.0023 0.0205 0.0206 285 2.72 0.0022

Running Time Comparison. For the running time comparison of the variants, see
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Figure 3.12: (a) Localization error and (b) miss and false alarm rates, of DeepMTL,
DeepMTL-yolo and DeepMTL-peak variants for varying sensor density in log-distance
dataset (propagation) model.

Table 3.2. Our hardware is an Intel i7-8700 CPU and an Nvidia RTX 2070 GPU.
We observe that, as expected, DeepMTL and DeepMTL-yolo which use a sophisti-
cated object-detection method do incur higher latency (around 20 milliseconds) than
DeepMTL-peak (around two milliseconds). As our key performance criteria is accu-
racy and the run time of DeepMTL is still quite low, we choose DeepMTL for comparison
with the prior works in §3.7.2.

Localizing Transmitters Close By. Localizing two or more transmitters close by is a
hard part of the MTL problem. Fig. 3.6(c) and (d) gives an example of when an
advanced object detection algorithm will work while a simple local maximal peak
detection might not. Fig. 3.6(c) and (d) shows DeepMTL can successfully localize two
transmitters as close as three pixels apart. When a pixel represents a 10m x 10m
area, then it is 30 meters apart. If a pixel represents a smaller area, such as 1m x 1m,
it has the potential to localize two transmitters as close as three meters apart.

Two YOLO Thresholds. YOLO has two important thresholds to tune that can affect
the miss rate and false alarm rate. One is the confidence threshold (conf) and the
other is the non-maximum suppression threshold (nms). An object will be recognized
as a peak only if its confidence level is larger than conf. If two recognized peaks’
bounding boxes have a large overlap, and their intersection of union is higher than
nms, then the two peaks will be considered as one peak. The peak with a higher
confidence level keeps while the other peak with a lower confidence level discards. A
higher conf will bring a lower false alarm rate but a higher miss rate, and a higher
nms will bring a lower miss rate but a higher false alarm rate. We pick conf = 0.8
and nms = 0.5 for DeepMTL as we observe these values bring a good balance between
false alarm rate and miss rate. In particular, a high conf of 0.8 precludes “fake
peaks" at locations with no transmitters. Also, a low nms weakens DeepMTL’s ability
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Figure 3.13: Localization error of DeepMTL, MAP, SPLOT, and DeepTxFinder for varying
number of transmitters in the log-distance dataset.
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Figure 3.14: Miss and false alarm rates of DeepMTL, MAP, SPLOT, and DeepTxFinder
for varying number of transmitters in the log-distance dataset.
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to localize two close by transmitters, while a high nms yields a high false alarm rate
(by incorrectly interpreting a single transmitter as multiple close by transmitters);
thus, we chose nms of 0.5.

3.7.2 DeepMTL vs. Prior Works

In this subsection, we compare DeepMTL with SPLOT, MAP, DeepTxFinder in both log-
distance (Fig. 3.13, 3.14, 3.15) and SPLAT (Fig. 3.16, 3.17, 3.18) propagation models
and thus, datasets. We observe similar performance trends for both datasets, i.e.,
DeepMTL significantly outperforms the other approaches by a large margin (in many
cases, by more than 50% in localization errors, false alarms, and miss rates). For all
techniques, as expected, the performance is generally worse in the SPLAT dataset
compared to the log-distance dataset.
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Figure 3.15: (a) Localization error, and (b) miss and false alarm rates, of DeepMTL,
MAP, SPLOT, and DeepTxFinder for varying sensor densities in the log-distance dataset.

Varying Number of Transmitters. Fig. 3.13 and Fig. 3.16 show the localization error
with varying number of transmitters, in the two datasets. We see that DeepMTL has a
mean localization error of only 2 to 2.5 meters (roughly, one-fourth of the side length
of a pixel/grid cell) in the log-distance dataset and about 5 to 6 meters in the SPLAT
dataset. In comparison, the localization errors of MAP, SPLOT, DeepTxFinder are two
to three times, eight to nine times, and few tens of times respectively more than that
of DeepMTL. Fig. 3.14 and Fig. 3.17 show the miss and false alarm rates with varying
number of transmitters in the two datasets. We observe that DeepMTL’s summation
of miss and false alarm rate is only 1% even at ten transmitters in the log-distance
dataset, and about 4% for the case of SPLAT! dataset. In comparison, the summation
of miss and false alarm rates for other schemes is at least 6% and 10% respectively
for the two datasets, when there are ten transmitters.

Varying Sensor Density. Fig. 3.15 and Fig. 3.18 plot the performance of various al-
gorithms for varying sensor density in the two datasets. For very low sensor density
of 1%, all algorithms perform badly (in comparison with higher sensor densities),
but DeepMTL still performs the best except that MAP performs best at 1% in terms
of false alarm rate and miss rate. For higher sensor densities, we observe a similar
performance trend as above—i.e., DeepMTL easily outperforms the other schemes by
a large margin. For the SPLAT! dataset at the 6% sensor density, the summation of
false alarm rate and miss rate is 2%, which is higher than the 1% summation for the
log-distance dataset.

Running Times. The run time of DeepMTL (in tens of milliseconds) is orders of mag-
nitude faster than MAP and SPLOT (both in seconds). See Table 3.2. The DeepMTL run
time is an order of magnitude slower than DeepTxFinder (in a few milliseconds), due
to the deep YOLOv3-cust taking up over 90% of the run time.

Summary and Analysis. In summary, our approach significantly outperforms the
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Figure 3.16: Localization error of DeepMTL, MAP, DeepTxFinder and SPLOT for varying
number of transmitters in the SPLAT! Dataset.
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Figure 3.17: Miss and false alarm rates of DeepMTL, MAP, SPLOT, and DeepTxFinder
for varying number of transmitters in the SPLAT! Dataset.

other approaches in all the accuracy performance metrics, as well as in terms of
latency. In particular, our approach also significantly outperforms the other CNN-
based approach DeepTxFinder. The main reason for DeepTxFinder’s inferior per-
formance is its inability to accurately predict the number of TXs—which forms a
fundamental component of their technique. In contrast, DeepMTL can circumvent
explicit pre-prediction of number of transmitters by using a well-developed object-
detection technique which works well for multiple objects especially in our context of
simple objects.

3.7.3 Transfer Learning

We demonstrate transfer learning (generalizability) by showing that the second step
in DeepMTL does not need to be retrained for different radio frequency propagation
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Figure 3.18: (a) Localization error, and (b) miss and false alarm rates, of DeepMTL,
MAP, SPLOT, and DeepTxFinder for varying sensor densities in the SPLAT! Dataset.
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Figure 3.19: Localization error for varying number of transmitters when the first and
second step of DeepMTL are trained on different training dataset.

models and terrains. In the previous experiments, the two steps of DeepMTL are both
trained in the same setting, either log-distance or SPLAT!. We do the following two
combinations to show that the second step does not need to retrain:

1. The first step is trained in the log-distance setting and the second step is trained
in the SPLAT! setting. Tested on the log-distance data.

2. The first step is trained in the SPLAT! setting and the second step is trained
in the log-distance setting. Tested on the SPLAT! data.

In both combinations, the second step YOLOv3-cust is trained on a different dataset
compared to the first step sen2peak. Fig. 3.19a shows that the localization error
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Figure 3.20: The miss rate and false alarm rate for varying number of transmitters
when the first and second step of DeepMTL are trained on different training dataset.

increases one-third in the first combination compared to the case where both the
first and second steps are trained on log-distance dataset. Fig. 3.19b shows that the
localization error increases only five percent in the second combination compared to
the case where both the first and second steps are trained on SPLAT! dataset. The
miss rate and false alarm rate for both combinations also increase minimally, i.e. the
summation of miss rate and false alarm rate only increases around 1% in absolute
value. See Fig. 3.20. This implies that the second step of DeepMTL, YOLOv3-cust, is
general and does not need to retrain for different radio frequency propagation models
and terrains. This is because the first step sen2peak is translating sensor readings
images from different geographical areas to the same Gaussian peaks. The first step
sen2peak still needs to be retrained for different situations to translate the sensor
readings to the peaks.

3.7.4 Localize Intruders in the Presence of Authorized Users

The previous experiment setting is based on the assumption that all transmitters we
are localizing are intruders. Different than the previous setting, here, we put five
authorized users and they are spread out in the field, so those five will not interfere
with each other. This is the more general version of the MTL problem, where there are
some authorized users in the background. Fig. 3.21 shows the localization error of two
approaches localizing intruders in the presence of five authorized users with a varying
number of intruders. It is observed that the first approach, localize then remove
authorized users, has a ten to twenty percent smaller localization error compared to
the second approach, subtract authorized user power then localize. This is due to the
inaccuracy of power subtraction from the SubtractNet. Fig. 3.22 shows the miss and
false alarm of two approaches localizing intruders in the presence of five authorized
users with a varying number of intruders. It is observed that the second approach,
subtract authorized TX power then localize, is having a high false alarm when the

61



I Localize, Remove Authorized TX [] Subtract Authorized TX Power, Localize

N
|

Mean Localization Error (m)

O = N W »~ U o

1 2 3 4 5 6 7 8 9 10
Number of Intruders

Figure 3.21: The localization error of two approaches in the presence of five authorized
users with varying number of intruders.

number of intruders is three or less. So for SubtractNet, subtracting the power of five
background authorized users from six transmitters (five out of six transmitters are
authorized users, one intruder) is relatively more difficult than subtracting the power
of five authorized users from nine users (five out of nine transmitters are authorized
users, four intruders). Also statistically, getting one false alarm when there are one
intruder and five authorized users is 100% false alarm rate, while getting one false
alarm when there are two intruders and five authorized users is only 50% false alarm
rate (the denominator is the number of intruders). Thus, the false alarm rate for
one and two number of intruders looks to differ a lot, but in reality, the false alarm
cases do not differ a lot). When the number of intruders is three or four, the two
approaches are comparable. But when the number of intruders is larger than four,
the second approach is having a lower miss and false alarm rate. In summary, the two
approaches both have their strengths. The main advantage for the second approach is
that the sum of miss rate and false alarm rate is lower when the number of intruders
is large.

3.7.5 Power Estimation Evaluation

In this subsection, we evaluate the transmitter power estimation performance. In
all experiments, the power range is 5 dB. The power error is presented in absolute
value. A power error of 0.5 dB implies a relative power error of 10%. First, we
compare the single transmitter power estimation between MAP and PredPower, and
then compare the multiple transmitter power estimation between MAP, PredPower
with error correction, and PredPower with error correction.

Figure 3.23(a) shows the performance of single transmitter power estimation in
the log-distance propagation model scenario with varying sensor density. In this case,
MAP has a 10 to 20 percent smaller power estimation error. Figure 3.23(b) shows
the performance of single transmitter power estimation in the SPLAT! model with
varying sensor density. In this case, PredPower is significantly lower in power error.
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Figure 3.22: The miss and false alarm of two localization approaches in the presence
of 5 authorized users with varying number of intruders.

So in average, PredPower outperforms MAP in single transmitter power estimation.
We can also conclude that for PredPower, a higher sensor density will decrease the
power estimation error. While a 2% of sensor density will lead to a higher error, a
sensor density of 6% is enough to give relatively good results.

For multiple transmitter power estimation, we compare three methods in two
propagation models and show that PredPower with error correction has the best per-
formance among the three methods. PredPower without error correction is expected
to perform the worst and it suggests that the post-processing error correction stage
for PredPower is important and works well.  Figure 3.24 shows the power estima-
tion error of three methods with a varying number of transmitters while the sensor
density is 6%. In this figure, MAP is the best only when the number of transmitters is
one (which is consistent with Fig 3.23(a)). Also the number of transmitters is one is
the only case when PredPower with correction and without correction has the same
performance. This is also expected because there is no need to error correction when
there is only one transmitter in the area. In all other cases, we see that PredPower
with error correction is the best, PredPower without error correction is the worst, and
MAP is in the middle. In Figure 3.25, which shows experiment results running in the
SPLAT! propagation model, we see a similar pattern compared to Figure 3.24. The
difference is that PredPower with error correction is always the best and the power
error is larger than the log-distance model scenario. For example in Figure 3.24, the
power estimation error for PredPower with error correction goes up to 0.6 dB, where
as in Figure 3.25, the error goes up to 1 dB.

3.7.6 Evaluation over Testbed Data

In this subsection, we show that our DeepMTL performs well in real-world collected
data. For this, we repurpose our testbed data from [307] as described below. We
start with describing our testbed data from [307].
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Figure 3.23: The single transmitter power estimation error of PredPower and MAP
in two propagation models, (a) Log-distance model and (b) Longley—Rice Irregular
Terrain with Obstruction Model (SPLAT!), for varying sensor densities.

Testbed Data. In [307], we conducted a testbed in an outdoor parking area of
32m x 32m large.” Each grid cell has a size of 3.2m x 3.2m, with the grid size being
10 x 10. We place a total of 18 sensors on the ground. The sensors consist of Odroid-
C2 (a single-board computer) connected to an RTL-SDR dongle and the RTL-SDR
connects to dipole antennas. The transmitters are USRP or HackRF connecting to
a laptop. We collect raw Inphase-Quadrature (I/Q) samples from the RTL-SDR at
the 915 MHz ISM band. We perform FFT on the I/Q samples with a bin size of
256 samples to get the signal power values, and then utilize the mean and standard
deviation of the power at frequency 915 MHz reported from each of the sensors.

Transforming the Data from 10 x 10 to 100 x 100 Grid. Note that DeepMTL’s
input requires a 100 x 100 input, while the above data is over a 10 x 10 grid. Also, the
sensor density in the above data is 18%, while we desire a sensor density of around
4-6% to have a fair comparison with our simulation based evaluations in previous
subsections. To achieve these objectives, we transform the above 10 x 10 data to a
100 x 100 grid data in two steps as follows.

1. Increase the data granularity from 10 x 10 to 20 x 20, by dividing each cell into
2 x 2 cells; we randomly pick one of these four smaller cells to represent the
original cell (i.e., to place the sensor if it existed in the original cell). See the
red-bordered boxes in Fig. 3.26(a)-(b). We refer to the full 20 x 20 grid as a
tile.

2. Now, we duplicate the 20 x 20 tile 25 times using a 5 X 5 pattern to generate a
100 x 100 grid. See Fig. 3.26(b)-(c).

The above steps effectively increase the area from the original 32m x 32m to 160m x
160m. Note that the first step above only splits each original cell into four smaller

9Dataset publicly available at: https://github.com/Wings-Lab/IPSN-2020-data
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Figure 3.24: The transmitter power estimation error of MAP, PredPower with and
without correction in Log-distance model for varying number of intruders

cells without increasing the whole area size. The 100 x 100 grid will have a sensor
density of 4.5% and each grid cell represents an area of 1.6m x 1.6m.

We note that the second duplication step can introduce inaccurate sensor readings
at the tile’s “edges", due to any transmitters from adjoining tiles. To circumvent this
issue, we place transmitters only within the internal 10 x 10 cells of each 20 x 20 tile
(i.e., avoid placing a transmitter on the five-cell edge of each tile). This yields a total
of 2500 potential positions to place a transmitter in the final 100 x 100 grid. With
the above setting, we generate training and testing datasets consisting of 25,000 and
12,500 samples respectively.

Testbed Results. The performance of DeepMTL on this real world based data is
shown in Fig. 3.27. Compared to DeepTxFinder, DeepMTL is significantly better in
localization error and false alarm rate and miss rate in almost all cases, which aligns
to the results in the previous subsections based on data generated from either log-
distance model or SPLAT!. The localization error of DeepMTL in Fig. 3.27(a) is around
1.3 meters. The error increases mildly with the increase in the number of transmitters.
The localization error in the testbed data is smaller compared to both log-distance
data results (Fig. 3.13) and SPLAT! data results (Fig. 3.16). This is because a grid
cell here is representing a smaller area. In the log-distance data, the localization error
is roughly one-fourth the side length of the grid cell. In the SPLAT! data result, the
localization error is roughly half the side length of its grid length. In the testbed
data, the localization is roughly eighty percent the side length of a grid cell. So the
localization error in the testbed data is the highest relative to the length of a grid
cell it represents. The sum of false alarm rate and miss rate is 3% when the number
of transmitters is five and is 5% when the number of transmitters is ten. The results
are a little bit worse than the results in the SPLAT! data (Fig. 3.17), where the sum
is 2% for five transmitters and 4% for ten transmitters.
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Figure 3.25: The transmitter power estimation error of MAP, PredPower with
and without correction in Longley-Rice Irregular Terrain with Obstruction Model
(SPLAT!) for varying number of intruders.

3.8 Related Work

Spectrum sensing is usually being realized by some distributed crowdsourced low-
cost sensors. Electrosense [211] and its follow-up work Skysense [216] are typical works
of spectrum sensing. In this crowdsourced sensing paradigm |38, sensors collect 1/Q
samples (in-phase and quadrature components of raw signals) and compute PSD
(power spectral density), which is RSS. Crowdsourced low-cost sensors do not have
the capability to collect AoA (angle of arrival) data because it requires more expensive
antenna arrays. They also do not have the capability to collect ToA (time of arrival)
data because it requires the transmission of a wide-band known sequence [65], which
is impossible in the case of localizing (blind) intruders. Spectrum sensing platforms
serve as the foundation of spectrum applications, and transmitter localization is one of
the main applications. Other applications include signal classification [212], spectrum
anomaly detection [153], sensor selection [24, 25|, spectral occupancy estimation [226],
etc.

Transmitter localization. Localization of an intruder in a field using sensor obser-
vations has been widely studied, but most of the works have focused on localization
of a single intruder [39, 78]. In general, to localize multiple intruders, the main chal-
lenge comes from the need to “separate” powers at the sensors [203], i.e., to divide
the total received power into power received from individual intruders. Blind source
separation is a very challenging problem; only very limited settings allow for known
techniques using sophisticated receivers [153, 228]. We note that (indoor) localization
of a device [14] based on signals received from multiple reference points (e.g, WiFi
access points) is a quite different problem (see [300] for a recent survey), as the signals
from reference points remain separate, and localization or tracking of multiple devices
can be done independently. Recent works on multi-target localization/tracking such
as [128] are different in the way that targets are passive, instead of active transmit-

66



Increase Granularity Duplicate

Y

H

lir_JEI

[ 1]

'H

(a) (b) (c)

Figure 3.26: (a). The original 10 x 10 testbed grid with 18 sensors (green cells)
representing a 32m x 32m area. (b). The 20 x 20 grid (a tile) obtained by replacing
each original cell by 2 x 2 smaller cells; a sensor, if present in the original cell, is
placed in a random cell within the 2 x 2 grid (see the green cells). (c¢). The final
100 x 100 grid obtained by duplicating the 20 x 20 tile 25 times using a 5 x 5 pattern.
The final geographic area is 160m x 160m.

ters in the MTL problem. Among other related works, [91] addresses the challenge of
handling time-skewed sensors observations in the MTL problem.

Wireless localization techniques mainly fall into two categories: geometry mapping
and fingerprinting-based. Geometry mapping mainly has two subcategories: ranging-
based such as trilateration (via RSS/RSSI, ToA [285], TDoA) and direction-based
such as triangulation (via AoA). Fingerprinting-based methods can use all signal phys-
ical measurements including but not limited to amplitude, RSS/RSSI, ToA, TDoA,
AoA, and CSI. Whenever deep learning is used for localization, it can be considered as
a fingerprinting-based method, since it requires a training phase to survey the area of
interest and a testing phase to search for (predict) the most likely location. In [293],
a diffusion model is used to generate the LoRa CSI fingerprints in orchards, and a
complex-valued fully-connected block classifier is used for localization.

Deep learning for wireless localization. Quite a few recent works have harnessed
the power of deep learning in the general topic of localization. E.g., DeepFi in [263]
designs a restricted Boltzmann machine that localizes a single target using WiFi
CSI amplitude data. DLoc in [11] uses WiFi CSI data as well. Its novelty is to
transform CSI data into an image and then uses an image-to-image translation method
to localize a single target. MonoDCell in [217] designs an LSTM that localizes a single
target in an indoor environment using cellular RSS data. [65] designs a three-layer
neural network that locations a single transmitter. DeepTxFinder in [331] uses CNN
to address the same MTL problem using RSS data in this chapter.

Transmitter Power Estimation. There are several works that estimate the trans-
mission power of a single transmitter. [301] studies the “blind" estimation of trans-
mission power based on received-power measurements at multiple cooperative sensor
nodes using maximum likelihood estimation. Blind means there is no prior knowledge

67



Il DeepMTL DeepTxFinder

N
o
|

E - 12 r False Alarm Rate
~— % Miss Rate
6 10
15 - S
S g8
© ]
g 10 £ 6
s
8 o 4
- 5 -8
& 2!
= 0- [ BN BN IN BN N BN NN BN o == Ha BN B i :
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of Transmitters Number of Transmitters
(a) (b)

Figure 3.27: The localization error (a), false alarm rate and miss rate (b) of DeepMTL
and DeepTxFinder in a real world collected data for varying number of intruders.

of the location of the transmitter or transmit power. [247] proposes an iterative tech-
nique that jointly estimates the location and power of a single primary transmitter.
In [132], the primary transmitter location and power are jointly estimated by a con-
strained optimization method. [307] uses the maximum likelihood estimation method
to estimate the power of an isolated single transmitter and adopts an online learning
method to estimate the power of multiple close-by transmitters simultaneously.

Machine learning empowered applications. Machine learning includes super-
vised, unsupervised, semi-supervised, self-supervised, and reinforcement learning [185,
187|. [186] has studied reinforcement learning in the setting of episodic Markov deci-
sion processes. [188] studies the off-policy evaluation problem in reinforcement learn-
ing with linear function approximation. Machine learning techniques have empowered
many applications. Studies have shown that image topology information can be lever-
aged to improve the performance of generative adversarial networks [251], and breast
cancer treatment response biomarker [250]. Novel meta-learning algorithms and dif-
fusion models are developed for generalizable magnetic resonance imaging reconstruc-
tion |26, 29, 30]. RELAX-MORE |[28] leverages self-supervised learning techniques to
achieve out-performing state-of-the-art on less gMRI training data. See |27, 31| for re-
views of optimization-based deep learning models for MRI Reconstruction. XGBoost
is great at capturing the upward trend using the portfolio features constructed by
PolyModel theory [319] and deep learning-based techniques have been shown to fur-
ther enhance portfolio construction [318]. Deep reinforcement learning can be used
to minimize battery energy storage cost [118] and maintain the fidelity of equiva-
lent model for active distribution networks [117]. [175] proposes machine learning
methods that help transportation engineers and policymakers conduct accurate traf-
fic performance evaluations [167, 176, 177|. Novel machine learning techniques have
been proposed to deal with noisy labeled data [245] and genetic data [244]. Social
media bots can be detected effectively via behavioral patterns [276] and metric learn-
ing [275]. Al-assisted audio command recognition enables collaborative human-robot
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drone inspection of bridges [151]. In [53, 54], algorithms are developed to make ma-
chine learning models more transparent, accountable, and explainable [55, 56]. Net-
work function virtualization [255, 258, 294] has great potential in low-performance
edge devices [256] as more applications and ISP functionalities are expected to be
offloaded to edge clouds [105, 257]. Machine learning can help the simulation and
analyses of multi-platelet recruitment simulation [327]. In [229, 316], semi-supervised
learning algorithms are developed to segment platelet images. In [260], a machine
learning-guided imaging approach is used to segment platelet geometries and quan-
tify adhesion dynamics parameters. DeepVS [284] combines 1D CNN and attention
models to exploit local features and temporal correlations to improve RF-based vi-
tal signs sensing. An LSTM encoder-decoder model is proposed to generate Chinese
poetry [169]. Machine learning also has applications in e-commerce [277], recommen-
dation system [145, 146, 147| financial time series data [162], and spectrum alloca-
tion [94]. [172] provide a novel multimodal transformer to fuse clinical notes and
structured electronic health record data for better prediction of in-hospital mortality.
[173] studies the attention abnormality in Trojaned BERTS, and [174] proposes a Tro-
jan attention loss for backdoor training which enhances the Trojan behavior. [152]
conducts an examination of malware detection using machine learning techniques.
[150] introduces innovative selection methods within the active learning framework.
Semi-supervised contrastive learning [296] and neural rendering [297] can greatly im-
prove medical image segmentation.  [298] calibrates multi-model representations
and [290] uses sampling techniques for linear contextural bandits. Novel decision
transformer [48] based methods and explainable machine learning techniques [46, 47]
have been applied to the network intrusion detection problem. Reinforcement learn-
ing [44] has been applied in various network utility optimization problems [43, 45] .
FIAT |[281] uses machine learning methods to achieve frictionless authentication for
[oT traffic. Graph neural networks have been shown to enhance quantum approximate
optimization algorithms as a warm-start technique [155]. DeepContrast [237] shows
that a deep learning approach can potentially replace the need for Gd based contrast
agent in brain MRI for approximating cerebral blood volume [159]. [329] leverages
graph structure information to better classify paper taxonomy. A new node encoder,
Graph Variational Diffusion Network [328], is proposed to improve the robustness of
node representation. StyleGAN is upgraded by replacing its mapping network with
8 attention-based transformers to improve face editing [148] and visualization [314].
A novel time-domain self-restoration coding scheme [312] is proposed to enable effi-
cient screen-camera communication. OptML [15] uses neural network to enable fast
and efficient cross band channel prediction. [119] uses natural language process-
ing techniques [235] to understand the well-being change (anxiety, stress, loneliness)
across age and gender during the COVID-19. To leverage idle supercomputer [310]
nodes, [178| introduces malleTrain to fit gaps in schedules for training deep neural
networks without model information. Various machine learning methods have shown
applications in 3D scene reconstruction [326], heart rate prediction [196], and stock
prediction [195].

Mobile health sensing and edge computing. RF sensing enables some important
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mobile health applications such as heart and respiratory rate monitoring [282, 287].
RF-based solutions support practical and longitudinal respiration monitoring owing
to their non-invasive nature [116, 286]. [283] proposed a robust RF-based respira-
tion monitoring. Low-quality RF sensing data will negatively affect the sensing task,
thus reliable signal quality detection is crucial [288]. Apart from RF sensing, acous-
tic sensing can also enable important applications such as face authentication [321,
322]. Apart from RF sensors, other sensors such as inertial sensors, photoplethys-
mography, and actigraphy also play a big role in mobile health and wearable IoT,
such as finger motion tracking [163], end-stage kidney fluid intake prediction in [242]
and predicting salivary cortisol levels in pancreatic cancer patients [73]. In [74], a
semi-supervised graph instance transformer is proposed for mental health inference.
Graph neural networks are useful in various IoT sensing environments [75] and mo-
bile health sensing [72]. In traditional wireless sensor networks, the sensing data is
uploaded (via wireless) to a centralized server [104, 209|, and the server processes the
sensing data. In an emerging computing paradigm called edge computing, however,
sensing data is mainly processed locally on resource-constrained sensors, e.g., on-
device machine learning [122, 142, 311]. Thus, various works target to scale up task
execution on resource-constrained systems [168|, such as SmartOn [170], Antler [171]
and intermittently-powered systems [123, 189]. Works tackle the computation over-
head and battery limitation of on-device edge computing via interactive learning
framework |324], offloading scheme [199] and reinforcement-learning-based schedul-
ing technique [325|. Studies have shown that deep learning can reconstruct ambiance
information [52| for mental health purposes. Large language models could help build
a practical benchmark for cloud configuration generation [291]. Other works study
the non-volatile hybrid memory in mobile memory systems [268, 269, 270]. Studies
have shown the existence of an optimal amount of connectivity [180] in a blockchain
network [181].

3.9 Conclusion

In this chapter, we have designed and developed a novel deep-learning-based scheme
(DeepMTL) for the multiple transmitter localization (MTL) problem. We extended this
problem to localizing the intruders in the presence of authorized users and developed
a novel technique to solve it. We also developed a novel technique that can solve
the multiple transmitter power estimation (MTPE) problem. Solving the general MTL
and MTPE are both achieved by utilizing our robust DeepMTL as a building block. We
evaluated all our methods extensively through data simulated from two propagation
models as well as small-scale data collected from a real-world testbed. Our developed
technique outperforms prior approaches by a significant margin in all performance
metrics.
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Chapter 4

Quantum Sensor Network Algorithms
for Transmitter Localization

A quantum sensor (QS) is able to measure various physical phenomena with extreme
sensitivity. QSs have been used in several applications such as atomic interferome-
ters, but few applications of a quantum sensor network (QSN) have been proposed
or developed. We look at a natural application of QSN—Iocalization of an event
(in particular, of a wireless signal transmitter). In this paper, we develop effective
quantum-based techniques for the localization of a transmitter using a QSN.

Our approaches pose the localization problem as a well-studied quantum state
discrimination (QSD) problem and address the challenges in its application to the
localization problem. In particular, a quantum state discrimination solution can suffer
from a high probability of error, especially when the number of states (i.e., the number
of potential transmitter locations in our case) can be high. We address this challenge
by developing a two-level localization approach, which localizes the transmitter at a
coarser granularity in the first level, and then, at a finer granularity in the second level.
We address the additional challenge of the impracticality of general measurements
by developing new schemes that replace the QQSD’s measurement operator with a
trained parameterized hybrid quantum-classical circuit. Our evaluation results using
a custom-built simulator show that our best scheme is able to achieve meter-level
(1-5m) localization accuracy; in the case of discrete locations, it achieves near-perfect
(99-100%) classification accuracy.

4.1 Introduction

Quantum sensors, being strongly sensitive to external disturbances, are able to mea-
sure various physical phenomena with extreme sensitivity. These quantum sensors
interact with the environment and have the environment phenomenon or parameters
encoded in their state [66]. In |71, 264], multiplexer technologies are proposed to
facilitate the readout of large (nearly 2000) arrays of superconducting transition-edge
sensor bolometers (i.e., quantum detectors), largely accelerating the development of
astronomy. A group of distributed quantum sensors, if prepared in an appropriate
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Figure 4.1: Overall architecture of using a QSN to localize a transmitter.

entangled state, can further enhance the estimation of a single continuous parameter,
improving the standard deviation of measurement by a factor of 1/4/m for m sensors
(Heisenberg limit) [96].

Recently, many protocols have been developed for the estimation of a single pa-
rameter or multiple independent parameters [96, 208| using one or multiple (possibly,
entangled) sensors. But, the use of a distributed set of quantum sensors working
collaboratively to estimate more complex physical/environmental phenomena, as in
many classical sensor network applications [5, 58, 108|, has not been explored much.
In this paper, we explore a potential quantum sensor network application— localiza-
tion of events. In particular, we develop effective techniques for radio frequency (RF)
transmitter localization and thus demonstrate the promise of QQSNs in the accurate
localization of events. Our motivation for choosing RF transmitter localization as the
event localization application is driven by the significance of transmitter localization
in wireless/mobile applications and recent advances in quantum sensor technologies
for RF signal detection (see §4.2).

Transmitter Localization using QSNs. Our approach to transmitter localization
using QSNs essentially involves posing the localization problem as a quantum state
discrimination (QSD) problem [20] which is to identify the specific state a given quan-
tum state is in (from a given set of states in which the system can be) by performing
quantum measurements on the given quantum system. The overall architecture is
illustrated in Fig. 4.1. First, a probe state is generated and distributed to the QSN.
Then, once the quantum sensors have been impacted (i.e., the overall quantum state
changed) due to the transmission from the transmitter’s signal, an appropriate quan-
tum measurement is made on the quantum state of the network. The outcome of
the measurement determines the quantum state, and thus, the location of the trans-
mitter. However, the above process can be erroneous, as solving the QSD problem
even optimally can incur a certain probability of (classification/discrimination) error.
This paper’s goal is to develop an approach with a minimal localization error. In that
context, our developed schemes in this paper are based on two ideas that extend the
above basic QSD-based approach:

1. We use a two-level approach that localizes the transmitter in two stages: first,
at a coarse level using a set of sensors over the entire area, and then, at a fine
level within the “block” determined by the first level.
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2. In addition, we circumvent the challenge of implementing a general measure-
ment operation, by instead using a trained parameterized hybrid quantum-
classical circuit that essentially implements the measurement operation and
predicts the transmitter location from quantum sensor data.

Our evaluation results show that our best scheme (which combines the above two
ideas) is able to achieve meter-level (1-5m) localization accuracy; in case of discrete
locations, it achieves near-perfect (99-100%) classification accuracy.

Contributions. In the above context, we make the following contributions.

1. We model the transmitter localization problem as a well-studied quantum state
discrimination (QSD) problem, which allows us to develop viable transmitter
localization schemes using quantum sensors.

2. We design two high-level schemes to localize a transmitter in a given area de-
ployed with a quantum sensor network. The first scheme is based on solving
an appropriate quantum state discrimination problem using a global measure-
ment, while the second scheme uses a trained hybrid quantum-classical circuit
to process the quantum sensor data. Within the above high-level schemes, we
also introduce a two-level localization scheme to improve the performance of
the basic one-level schemes.

3. To evaluate our schemes, we model how a quantum sensor’s state evolves due
to RF signals from a transmitter at a certain distance. Using this model, we
evaluate our localization schemes and demonstrate their effectiveness in our
custom-built simulator.

Paper Organization. The paper is organized as follows. In §4.2, we present our
quantum sensor model, formally define the transmitter localization problem and dis-
cuss related work. In the following two sections, we describe our two classes of
algorithm: quantum-state-discrimination (QSD) based scheme, and parameterized-
quantum-circuit (PQC) based scheme. We discuss our evaluation results in §4.5, and
give concluding remarks in §4.6.

4.2 Sensor Model, Problem, Related Work

In this section, we start with motivating our choice of RF transmitter localization
as an application for QSN, and then model the impact of an RF received signal on
the quantum state of a quantum sensor. We then formulate the quantum localization
problem and discuss related work.

Motivation for Transmitter Localization. Accurate detection and localization
of a wireless transmitter (typically, using a radio-frequency (RF) wireless signal) is
important in a variety of wireless and/or mobile applications, e.g., as an intruder
detection in shared spectrum systems [39], localization of devices/users in indoor
settings (e.g., supermarkets, museums, virtual/augmented reality applications [103]),

73



etc. In general, transmitter localization is a key technology for location-based services
and an improvement in transmitter localization will be very beneficial to a variety of
applications. In particular, in shared spectrum systems [39], there is a need to guard
the shared spectrum against unauthorized usage which entails detecting and localizing
unauthorized transmitters that may use and/or jam the spectrum illegally. Classical
techniques for transmitter localization involve triangulation [289] or fingerprinting
techniques [14] (see [57] for a survey).

Advances in quantum technologies have led to the creation of efficient quantum
sensors for radio-frequency (RF) signal detection that are much more sensitive than
the classical antenna-based RF sensors and are expected to cover the entire RF spec-
trum [184]. E.g., in [280], researchers use some distributed entangled RF-photonic
quantum sensors to estimate the amplitude and phase of a radio signal, and the es-
timation variance beats the standard quantum limit by over 3 dB. Thus, QSNs may
have a great potential in accurate localization of wireless transmitters, which is a
problem of great significance in many applications.

Quantum Sensor Model. Impact on a quantum sensor due to a physical phe-
nomenon is typically modeled by an appropriate unitary operator that results in a
quantum phase change [66]. Below, we model the change in the quantum phase of a
sensor’s state due to an RF-received signal. Since the RF received signal (and thus
the change in quantum phase) depends on the sensor’s distance from the transmitter,
we can use the phase change that occurs during the sensing period to localize an RF
transmitter.

Sensor’s Hamiltonian. A quantum sensor’s Hamiltonian H (t) is a sum of two! com-
ponents [66]:

H(t) = Hy + Hy(t)

where H is the internal Hamiltonian of the system and Hy (t) is the change in the
Hamiltonian due to an external signal V(¢). The internal Hamiltonian H, remains
fixed and is equal to Ey |0) (0| + E7 |1) (1], where Ey and E; are energies corresponding
to the |0) and |1) states respectively. The signal Hamiltonian Hy (t) is given by:2

. 1 A
Ay (t) = = 57V(1)5

where o, is the Pauli-Z matrix, Vj/(t) is the parallel component of the signal V'(t),
and ~ is the coupling of the qubit to the parallel component. In essence, the above
induces a change in the spin in the z axis direction resulting in a qubit phase shift.
Above, V|(t) at the sensor is given by:

Vi(t) = Esin(2r ft +0)

!The third component of control Hamiltonian is chosen to tune the sensor in a controlled way [66];
we assume Hoontror = 0 in our analysis [79].

2Here, we ignore the transverse component of ﬁv(t) [79], since, in most sensor applications, the
energy difference AE = F; — Ej is much higher than the energy changes introduced by the signal
V(t) [66].

74



where F is the signal’s (electric field) maximum amplitude, f is the signal frequency
and 0 is the signal’s phase.

Evolution Unitary Operator. Assume at time ¢ = 0, the quantum state is |¢g). Then
at time ¢ = t/, the state |¢y) is,

[} = U(0, ') o)
where the time evolution unitary operator U (0,t") due to the signal is given by:
00,t) = e J fry (yat
B N AL

where i = 6.626x107* J-s is the plank constant. The unit of coupling 7 is J/(V-m™!),
and the unit of Vj(¢) is V -m™1.

Phase Shift over a Sensing Time Window. Let us represent U (0,") as [161, 315]

U(0,t) = e 2% (4.1)

where the phase shift ¢ = fo TV (t)dt, accumulated during the sensing time [0, '] due
to the signal V(t) is estimated as follows. Note that Vj(t) is a sinusoidal function—
and hence, the phase shift in one full cycle (¢’ = 1/f) is zero. To address this, we invert
the qubit whenever the sinusoidal function turns from positive to negative using a
pulse [66]. Thus, the accumulated phase in one cycle ¢ = fol/ "Iyt = %ﬂE%
Since the sensing time t' is expected to be much larger than 1/f, the phase shift
accumulated during the sensing time [0, ¢'] can be estimated by:

2
¢ = —~Et (4.2)
wh

Thus, for a fixed sensing time duration, the phase shift in the sensor’s quantum state
accumulated due to the signal is proportional to F, the signal’s maximum amplitude,
which is a function of the distance from the transmitter (see §4.5).

Impact on Multiple Quantum Sensors. Consider a set of m quantum sensors dis-
tributed over an area, with a global m-qubit quantum state of [¢y). Consider a
transmitter at a certain specific location in the area. Let U; be the impact on the 7
sensor due to the transmitter over a sensing time window. Then, the overall impact
on the global quantum state is represented by a tensor product of m individual unitary
operators, i.e., @7, Ui, and the evolved global state state is @', Ui [o)-

Problem Definition. Consider a network of quantum sensors distributed in a ge-
ographic area and a potential transmitter/intruder in the area. Let the initial state
of the system of quantum sensors network be [¢)g). As described above, due to the
transmission from the intruder, the quantum state evolves to |ihy) = U |thy) over a
period of time t’. The transmitter localization problem is to determine the location
of the transmitter based on the evolved quantum state [iy).
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Related Work. Radio transmitter localization using a set of sensors/receivers has
been widely studied [57, 91, 299]. Localization methods can be roughly classified into
two types: geometry-based and fingerprinting-based. The geometry-based method in-
cludes multilateration (by measuring time-of-flight between the transmitter and mul-
tiple sensors) or triangulation (by measuring angle-of-arrival (AoA) of the transmitter
at multiple sensors) [289]. The fingerprinting-based method [14]| has a training stage
that records the signal fingerprint for certain locations; Localization is then achieved
by matching the real-time signal to the recorded fingerprints. Here, a fingerprint
for a transmitter location may be a vector of received signal strengths (RSS) [299]
at the sensors. Localization of simultaneously-active multiple transmitters is more
challenging, and has been addressed in recent works [304, 305, 307].

Recently, there have been some works that have used quantum technology to
investigate intruder /transmitter localization-related problems. E.g., [231] develops a
scheme to improve the size of the fingerprints used in the above-described fingerprint-
ing approach, by encoding classical sensor data into qubits through quantum ampli-
tude encoding. In addition, [238]| derives analytical equations to compute the AoA of
an incoming RF signal using four entangled distributed quantum sensors, without any
evaluations. [191] proposes a quantum sensor network using Mach-Zehnder interfer-
ometers to detect (not localize) intruders for surveillance purposes. Finally, 110, 308]
investigate the optimization of the initial state in discrete-outcome quantum sensor
networks and show that an entangled initial state yields higher measurement accu-
racy in some applications. In particular, QuCS lecture series [156] have successfully
enhanced the visibility of quantum computing software and system level worldwide.

Parameter Estimation using Quantum Sensors. Prior works on parameter estimation
using quantum sensors include: estimation of single [96] or multiple independent
parameters [208], estimation of a single linear function over parameters [7], and esti-
mation of multiple linear functions [221]. Our transmitter localization problem can
be looked upon as a novel single parameter (TX location) estimation problem based
on sensor measurements that are functions (based on signal propagation model and
distance) of the parameter being estimated.

4.3 Methodology and Our Approach

Quantum State Discrimination (QSD). Given a quantum state |¢) that is known
to be equal to one of the states (known as target states) in the set {|¢1) , [p2) ..., |dn)},
the quantum state discrimination (QSD) problem is to determine which state |¢) re-
ally is. In general, each target state |¢;) may be associated with a prior probability ¢;;
in this paper, we assume uniform prior. The QSD problem is typically solved using
a series of measurements or a single measurement—as defined below. It is known
that if the target states {|¢;)} are not mutually orthogonal, then there is no quantum
measurement capable of perfectly (without error) distinguishing the states. Thus, a
QSD solution may give an erroneous answer—i.e., guess the state to be in |¢;) when
the state is really in |¢;) for some ¢ # j. Thus, a QSD solution is associated with
an overall probability of error (PoE), and the optimization goal of the QSD problem
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is to determine the measurement (or a sequence of measurements) that minimizes
the PoE. We note that in our developed schemes, we don’t actually solve the QSD
problems that arise due to the impracticality of implementing the general POV Ms,
as discussed later; instead, we just use the standard POVM known as pretty good
measurement (PGM).

General Measurements. A general measurement [197] is defined by matrices My, Mo, . ..
M,, such that ) . M;Mi = [ where ]\42-T is the conjugate transpose of M;. If this general
measurement is carried out on a pure state, we see the outcome “7” with probability
p(i) = (¢| M M;|¢). Thus, if we associate the outcome “i” with the given state |¢)
being in the target state |¢;), the probability of error (PoE) for the given measurement
{M;} is given by 32, 37 . (o] MM [6;).

If we are only interested in the probability of outcomes (as in our context), the
above general measurement can also be represented by the set of positive semi-definite
matrices (PSD) {E; = M]M,} where 3, E; = I. This representation is called
positive-operator valued measure (POVM); in this paper, we use this representation
of measurement for simplicity.

Core Idea: TX Localization as QSD. Consider a geographic area where a trans-
mitter can be at a set of potential locations {ly,ls,...,l,}. For simplicity, let us
assume that the transmission power is constant. Let the initial state of the quantum
system, composed of say m distributed quantum sensors, be [1g). When the trans-
mitter 7" is at a location [;, let the impact of the T’s transmission from location [;
evolve the overall state of the quantum system to [¢;) based on the model described
in the previous section. Now, consider the set of target states {|¢1),|v2), ..., |¥n)}
corresponding to the set of potential locations of the transmitter. Then, localizing the
transmitters, i.e., determining the location [; from where the transmission occurred,
is tantamount to solving the QSD problem with the target states {|¢;)}. Thus, de-
termining the state of the quantum system yields the transmitter location.

Selection of Initial State and Measurement. In the above context, our goal is to select
an initial state [1) and the POVM measurement (i.e., PSD matrices {F, ..., E,},
one for each potential outcome/location) such that the overall PoE is minimized —
for a given setting of transmitter location, quantum sensors, and signal propagation
model. The optimization problem of selecting an optimal combination of initial state
and POVM in our context is beyond the scope of this work. Here, we use a non-
entangled uniform superposition pure initial state |¢g) = Z?;nofl \/%Tn |i). For a given
initial state and target states, determining an optimal POVM can be shown to be
a convex optimization problem and can be solved using an appropriate semi-definite
program (SDP) [81]. However, due to scalability challenges in solving the SDP, whose
size is exponential in the number of quantum sensors involved, in this paper, we use a
well-known measurement known as pretty-good-measurement (PGM) which is known

to perform well in general settings [107]. The PGM POVM is given by:

E; =qip Ppip™? (4.3)

where ¢; is the prior probability and p; = |¢;) (¢4| is the density matriz of the i"
target state ¢;, and p =), ¢;p;.
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Figure 4.2: OneLevel Scheme.

Basic OnelLevel Scheme; Key Challenges. The above-described methodology
is essentially our basic OneLevel localization scheme, see Fig. 4.2. That is, the
OneLevel scheme localizes the transmitter by first determining the set of target states
{11y, |te) , ..., |tbn)} corresponding to the centers of the cells (a set of transmitter
locations), and then, localizes the transmitter in real-time by performing QSD over
the evolved quantum state using PGM measurement. Note that we use only the
cells’ centers to generate the target states, and also that the predicted location of
the transmitter is always a cell’s center in the QSD-based schemes, since the QSD-
based schemes are fundamentally classification of the transmitter location into cells.
However, during evaluation, the actual location of the transmitter can be anywhere
in the area—presumably, non-center locations of the transmitter may incur higher
localization errors.

The key challenges in the OneLevel scheme are twofold: (i) It is likely to incur a
high probability of error due to a large number of target states (equal to the number
of potential transmitter locations). (ii) A global POVM measurement over a large
number of sensors can be difficult to implement in practice [295]; even ignoring the
communication cost of teleporting the qubits to a central location, the main challenge
arises due to the complexity of the circuit or hardware required to implement a POVM
over a large number of qubit states. We address these challenges by designing a two-
level localization scheme as described below; in the following section, we further
address the above challenges by designing non-QSD based schemes.

POVM-Loc Scheme. POVM-Loc solves the above-mentioned challenges by localizing the
transmitter by using two levels of POVMs, with each POVM requiring a measurement
over a much fewer number of sensors and with a much fewer number of possible target
states. We discretize the given area into a grid; each unit of the grid is called a cell.
A block is a group of neighboring cells that form a rectangle. In Fig. 4.3 (a), a grid
has 4 x 4 cells and 2 x 2 blocks. The thick dotted lines depict the blocks while the
non-thick dotted lines depict the cells. In general, for a N x N grid with N? cells,
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Figure 4.3: POVM-Loc Scheme. (a) Coarse-level localization phase, and (b) Fine-level
localization phase.

we construct blocks by dividing the entire grid into v/ N x v/N blocks — yielding
N blocks in the whole area, with each block comprised of VN x VN = N cells.
Without loss of generality, we assume v/N to be an integer in our discussion. The
basic idea of the POVM-Loc scheme is to localize the transmitter in two stages: first,
localize the transmitter at a block level (Fig. 4.3 (a)); and then, within that block,
localize the transmitter at the cell level (Fig. 4.3 (b)). The sensors, target states,
and POVMs used for localization at these two stages are different. Such a two-stage
localization scheme naturally addresses the above-mentioned challenges by reducing
both the number of sensors as well as target states required at each stage. We describe
the scheme in more detail below.

Coarse-Level Localization. The coarse level concerns localizing the transmitter at the
block level, and is done based on coarse-level sensors deployed over the entire given
area. The target states for the coarse-level QSD /localization are the states corre-
sponding to the location at the center of each block in the given area. As mentioned
above, since the number of blocks is N, the number of target states for the Coarse-
Level localization is N. The POVM measurement for the coarse-level localization is
constructed using Eqn. 4.3 for the PGM measurement over the target states derived
from the impact of the transmitter at coarse-level discrete locations (i.e., the cen-
ter of the blocks) on the coarse-level sensors. Note that in reality, the transmitter
is likely not at the center of the blocks—but, we stipulate that a block’s center is
a reasonable representative of the actual locations of the transmitter in that block.
More formally, let {Ly, Lo, ..., Ly} denote the centers of the blocks in the area, and
S be the coarse-level sensors. Let U; denote the impact on S when the transmitter is
at location L;. Then, the target states for the coarse-level localization are {U; |iho)}
where [t)g) is the initial state of S. These target states are used to determine the
POVM measurements as per Eqn. 4.3, and thus, determine the block.

Fine-Level Localization. Once the transmitter has been localized within a block B
via coarse-level localization, the transmitter is then localized at a cell level within B.
For fine-level localization, each block B has a set of fine-level sensors S(B) deployed
within B (which need not be disjoint from the coarse-level sensors). The target
states for fine-level localization within B correspond to the potential locations of the
transmitter within B which are the centers of the cells within B, see Fig. 4.3 (b),
and is derived from the impact of the transmitter’s signal at the fine-level sensors
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Figure 4.4: (a) Our parameterized quantum circuit (PQC) block, for the general case
of m qubits. It contains m number of Us gates and m number of CU; gates. (b)
The hybrid quantum-classical circuit to localize a transmitter. It consists of multiple
PQC blocks, followed by classical processing of measurements, and finally, a neural
network-based location predictor. We use only four blocks of PQCs in our hybrid
circuit.

S(B). Note that at the fine-level localization phase, only the sensors S(B) where B
is the block selected in the previous coarse-level localization are involved. Note that
S(B;) and S(Bs) from two different blocks need not be disjoint. More formally, let
{l1,13,...,ly} denote the centers of the cells in the block B selected by the coarse-level
localization phase, and S(B) be the fine-level sensors. Let U; denote the impact on
S(B) when the transmitter is at location [;. Then, the target states for the fine level
localization are {U; |1ho)} where |t)) is the initial state of S(B). These target states
are used to determine the POVM measurement as per Eqn. 4.3, and thus, determine
the cell within the block B, which is the TX location. As mentioned before in the
one-level scheme, we note that, during evaluation, the location of the transmitter can
be anywhere in the area, even though we have only use the cells’ centers to generate
the target states.

Multi-shot Discrimination. The quantum measurement is intrinsically probabilistic
and the single-shot discrimination can incur a high probability of error. One way to
reduce this probability of error is to repeat the discrimination process many times
and pick the most frequent measurement outcome. Such repeated measurements are
commonly done in quantum sensing [66] and computing [232]. In our context, the
repetitions are done while the transmitter remains fixed.

4.4 Parameterized Quantum Circuit Based Localiza-
tion

Motivation. The QSD-based method discussed in the previous section has a solid
mathematical foundation, but its practical implementation is non-trivial and even
infeasible for a large sensor network and/or a large number of potential transmitter
locations. In particular, the POVM measurement operator (derived from the QSD
problem or corresponding to the pretty-good measurement) can be infeasible to im-
plement for a large number of outcomes/locations. The issue is somewhat mitigated
by using a two-level approach as described above, but the PoE (probability of error)
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in the first (coarser) level can still be high due to imperfect training (as we assign
a single outcome to a set of target locations). A potential approach to address the
above challenge is to “translate” a given POVM into an appropriate quantum circuit
comprised of quantum gates and simple measurements (e.g., projective and/or com-
putational basis) [295]. E.g., [124] presents a technique to convert POVM operators
to such quantum circuits. However, the computational time incurred in translating a
POVM operator into a quantum circuit is exponential to the number of qubits and is
thus infeasible. In addition, the translated quantum circuits are also sub-optimal in
terms of the number of CNOT gates used [124]. Also, note that the POVM computed
in our QSD-based method is sub-optimal to begin with.

In this section, we develop a machine learning (ML) technique to actually learn a
quantum circuit that represents the processing and measurement protocol needed to
localize the transmitter from the evolved quantum state. The learned quantum circuit
model maps the global evolved quantum state to the transmitter location. In essence,
we avoid computing the POVM (from QSD, or using the pretty-good measurement)
altogether (and thus, also avoid the challenge of translating it to a quantum circuit),
and instead learn the required quantum circuit representing the measurement proto-
col. To facilitate learning the quantum circuit, we use an appropriate parameterized
quantum circuit (PQC) and learn its parameters—as in [202] wherein a POVM is
trained using parameterized quantum circuits. Our PQC-based localization method
based on the above insights is described below. We start with a brief introduction to

PQCs.

Parameterized Quantum Circuits (PQC). Parameterized quantum circuits have
emerged as a powerful tool in quantum computing [18], providing an adaptable
framework for tackling diverse computational tasks. Parameterized quantum cir-
cuits (PQCs) can be regarded as machine learning models with remarkable expressive
power; just like classical ML models, PQC circuits/models are trained to perform
data-driven tasks. PQC’s security can be enhanced via distributing the circuits to
multiple quantum cloud providers [265]. PQCs offer several advantages over fixed
quantum circuits |18, 252, 253|, including;:

1. Adaptability. The parameters in PQCs can be adjusted to tailor the circuit
for a specific problem, allowing a single circuit structure to be repurposed for
various tasks.

2. Trainability. PQCs can be trained using classical optimization algorithms to
solve optimization problems and machine learning tasks, making them a vital
component of hybrid quantum-classical algorithms.

3. Noise Resilience. PQCs can be more robust against noise and errors in near-term
quantum devices, as they allow shorter-depth circuits that reduce the impact
of errors.

In essence, PQCs are quantum circuits comprised of parameterized gates and
measurements. Commonly used parameterized gates in PQCs include rotation gates
R.(0), R,(0), R.(0) which represents rotating about the X, Y, Z axis respectively with
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angle 6. A more versatile gate is the Us(6, ¢, \), which can be used to generate any
single-qubit operation by setting the appropriate values for the parameters; U; gate
can be decomposed into simpler R,, R,, R, gates. The parameterized CU;(6, ¢, \)
gate is the controlled version of the Uz gate; it applies the Us gate only when the
control qubit is in the |1) state. We use a combination of Us and CU; gates in our
parameterized quantum circuits.

PQC-based Localization Method. At a high level, in our PQC-based localization
scheme, the QSN data is fed into a trained hybrid quantum-classical model, which
represents the overall measurement strategy and thus outputs the transmitter loca-
tion. Our hybrid quantum-classical model (see Fig. 4.4(b)) consists of the following
three components. (i) Parameterized Quantum Circuit (PQC), (ii) Processing the
measurement outcomes, (iii) Neural network location predictor, to convert the pro-
cessed measurement outcomes to the transmitter location. We describe each of the
above components below.

1. Parameterized Quantum Circuit (PQC) Design. The parameterized quantum cir-
cuit can be designed in many ways. We design our PQC component based on some
common PQC-design patterns [154, 266 used in prior works. For example, in [164],
a block of PQC contains one layer of ZZ gates and one layer of R, gates. In [183],
a block of PQC contains one layer each of R,, R, R.,CZ gates. In our scheme, the
quantum circuit is composed of blocks, and each block is a combination of Us, CUs
gates; we use these two gates in our design as they form a universal gate set and
are widely used in PQC circuits. Circuits consisting Us and CU; gates have a high
expressive power as each gate has three trainable parameters. In particular, given
N number of input qubits, a block consists of N number of Us; and N number of
CU; gates. See Fig. 4.4. In a block, each input qubit is first operated on by the
unary Us gate in parallel, forming a layer of Us gates. Then, there is a series of C'U3
gates following a ring connection pattern, i.e., each C'Us is executed over two “con-
secutive” qubits (with the first being the control qubit) except for the last CU;s gate
which is over the last and the first qubit. Thus, a single block has a circuit depth of
N + 1. The overall PQC may have a series of above blocks—the expressive power of
the model increases monotonically with the increase in the number of blocks. In our
evaluations (§2.5), we used four blocks as we observed that four blocks provide good
performance while having a modest circuit depth. After the blocks, the PQC ends
with the measurement on the standard computational basis, i.e., the Pauli Z basis.

2. Process Measurement Outcomes. As in the QSD-based schemes, we will use the
PQC to make repeated measurements. To use the repeated measurements effectively
for location prediction, we characterize the set of repeated measurement results by ex-
pectation values, one for each qubit. In particular, we compute the expectation value
(Z) of the Pauli Z operator (which represents the measurement in the computational
basis), and feed as input to a neural network for final location prediction as described
below. We note that, for a quantum state [¢)) = «|0) + §]1), the expectation value
(Z) of the Pauli Z operator is given by (¢| Z |¢) = |a|* — |B|*

3. Neural Network to Predict Location. We consider two variants of our neural net-
work predictor: (i) Classifier variant. which outputs a class/label corresponding to
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the cell where the TX is located, and thus, predicts the location to be the cell’s center.
(ii) Regression variant, that outputs locations as the x and y coordinates.

Classifier Variant. In [274], a novel quantum label-based supervised learning
approach is proposed to perform multi-classification. Our overall circuit with the
Classifier component for the location prediction essentially equates to a circuit for
quantum state discrimination (QSD), as the QSD problem also outputs a finite num-
ber of discrete outcomes. For the Classifier Variant, we use a simple neural network
with only an input layer and an output later, having no hidden layers—i.e., a single
fully connected layer. The input neurons are the expectation values of the Pauli Z op-
erator from the measurements as described above, and the output neurons represent
the cell labels. See Fig.4.5(a), which shows the fully connected layer for a network of
4 quantum sensors deployed in a 4 x 4 grid with 16 cells.

Regression Variant. The Classifier Variant outputs locations in a discrete space—
which is fundamentally sub-optimal if the transmitter can be anywhere in the 2D
space. To output the predicted location in the continuous 2D space, we use a Regres-
sion Variant that outputs the location as an (x,y) point. For the setting wherein the
transmitter may be located anywhere in the 2D space, the Regression Variant should
have a smaller localization error. Fig.4.5(b) shows the fully connected layer for the
Regression Variant; the number of output neurons is always two, i.e., a X coordinate
and a Y coordinate.

4. Loss Function. During training, the gradient of the loss function is back-propagated
through the neural network and the quantum circuit parts, so that the parameters
within these parts can be appropriately updated. The loss functions used for the
Classifier Variant and the Regression Variant are different; for the Classifier variant,
we use the cross-entropy loss function while for the Regression variant, we use the
mean square error loss function.

PQC-One and PQC-Two Schemes. The above-described hybrid quantum-classical
model is essentially our PQC-0ne localization scheme. By using PQC-0One as a building
block and using the same two-level (coarse, fine) idea described in §4.3, we design
the PQC-Two, corresponding to the two-level QSD-based schemes described in the
previous section. At the first coarse level, the output of the “coarse-level PQC-0One”
will determine the block the transmitter is in. Then at the second fine level, the
output of the “fine-level PQC-0ne” tied to the block determined by the coarse level is
the final location output. The PQC-based schemes essentially use the trained circuit
in lieu of the POVM used in the QSD-based schemes. The PQC-based schemes can
be used with either the Classifier or the Regression variant for the last predictor
component.

4.5 FEvaluation

In this section, we evaluate our developed schemes. We make two observations,
which are as expected: (1) Performance of two-level methods is better than one-
level methods in general, and (2) Performance of the PQC-based methods is superior
to the QSD-based methods. In summary, our schemes are able to achieve meter-level
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Figure 4.5: Neural network (a fully connected layer) for 4 quantum sensors to predict
the location from processed measurements. (a) Classifier Variant, (b) Regression
Variant.

(1-5m) localization accuracy, and near-perfect (99-100%) classification accuracy in
the case of discrete locations.

4.5.1 Evaluation Settings

Algorithms Evaluated. We evaluate four algorithms: OneLevel, POVM-Loc, PQC-0One,
PQC-Two. As the name implies, OneLevel and PQC-One are one-level methods, while
POVM-Loc and PQC-Two are two-level methods. Similarly, OneLevel and POVM-Loc are
QSD-based methods, while PQC-0ne and PQC-Two are PQC-based methods. We use
the Regression Variant in our PQC-based methods by default, since in our default
setting the transmitter can be anywhere in the 2D space. Our code® is written in
Python and uses Numpy and Scipy libraries to perform matrix-related operations.

QSD-based Method Implementation. To implement the QSD-based methods,
we first determine the target states which are then used to construct the pretty-
good-measurement POVM via Eqn. 4.3. To localize a transmitter, we first compute
the evolved state and then, use the POVM to determine the target state or the
TX location. This is done repeatedly as described in Section 4.3, and in two levels
(coarse, fine) depending on the localization scheme. The target states and evolved
states are both generated using the sensor model described in Section 4.2, i.e., using
Eqns. 4.1-4.2, with the electric field strength (E) and phase shift range modeled as
below.

Generating Sensor Readings. The crux of determining target states, computing
the evolved states, and simulating the training datasets is to compute the phase shift
picked up by the quantum sensors due to the signal during the sensing process. In
Eqn. 4.2, we modeled the phase shift as a function of the electric field strength and
the sensing time. Thus, we need a model for the electric field strength. In free space,
the electric field strength produced by a transmitter with an isotropic radiator can

3https://github.com /caitaozhan /QuantumLocalization
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be approximated as [271]

E = y X (1 + noise)

where E is the electric field strength in V -m ™!, P is the transmitter power output in
W (watt), and d is the distance from the radiator in m. Since in most quantum sensing
applications, the signal to be sensed are weak signals, here we assume the power of
the transmitter P = 0.1uW. Ideally, the strength of the electric field is inverse to
the distance between the transmitter and the sensor. But in reality, the relationship
is more complicated. So, we add a random uniform variable noise € [—0.05,0.05]
to incorporate reality in a simple way. The target states and thus the POVMs are
computed assuming zero noise during training, while during localization, the signal
received is assumed to contain noise. The simulated datasets for PQC-based methods
are assumed to contain noise too.

Range of Phase Shift ¢. We set the sensing time #' to 1 millisecond*. As mentioned
later, our grid cells are 10m x 10m, and we assume 5 meters to be the minimum
distance allowed between a transmitter and a quantum sensor. Thus, we choose the
coupling constant v to be such that a quantum sensor at 5 meters away from the
transmitter accumulates a phase shift of 27 during the sensing time t'; this entails
that the maximum phase shift is 27 and the minimum phase shift is as low as 0 (when
the sensor is very far away from the transmitter).

PQC-Based Methods Implementation and Training. Different than the QSD-
based methods, the PQC-Based methods involve quantum circuits. We use the
publicly available TorchQuantum [252| library to implement and train the param-
eterized hybrid circuits. TorchQuantum’s classes are inherited from a core class of
PyTorch [201], which is used to implement the neural network predictor. Thanks to
PyTorch, we are able to train the PQCs fast on a GPU. We use the Adam optimizer
and train for 80 epochs for both PQC-0One and PQC-Two methods.

The sensor readings are also used as the sensor data to train the PQC-based
hybrid circuit models. Essentially, for a fixed initial global state of the sensors (say,
1), each sample consists of the quantum state received from the quantum sensor
network (input feature) and the location of the transmitter (ground truth target).
More formally, each sample is of the kind: (Q!", U; |4 , L), where U; is the evolution
unitary operator for the i quantum sensor (as per §4.2 and above paragraphs), [)
is the uniform superposition initial state, and L is the location of the transmitter in
the field in all scenarios except for one, i.e., L is the block number for samples used to
train a “coarse-level PQC-0ne” in the PQC-Two Classifier Variant. We use one hundred
training examples/samples for each cell, with the transmitter’s location randomly
scattered over the cell. For example, consider a 4 x 4 grid with a block length of 2.
The training dataset for PQC-One will have 16 x 100 = 1600 samples. And PQC-Two
will have 16 x 100 = 1600 samples in the first level to train a “coarse-level PQC-0One”,
and 4 x 400 = 1600 samples in the second level to train 4 blocks each requiring

4In principle, the sensing time period must be smaller than the decoherence time, which varies
across different quantum technologies.
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Figure 4.6: The performance of OneLevel, POVM-Loc, PQC-0One, PQC-Two for varying
grid size and 8 quantum sensors.

4 x 100 = 400 to train a “fine-level PQC-0ne”. Thus, there are a total of 3600 training
samples used to train 5 models in a PQC-Two method.

Quantum Sensor Deployment. We deploy sensors uniformly over the area; for
the POVM-Loc and PQC-Two schemes, we deploy the fine-level sensors along the block
borders so that the sensors can be used by the two neighbor blocks, i.e. fine-level
sensors for the blocks are not disjoint. We use a maximum of 8 quantum sensors for
any single QSD instance—since the memory and computing requirements for stor-
ing and implementing a POVM become prohibitive beyond that. E.g., a POVM
for 256 target-states over 12 sensors requires 69 GB of main memory storage.® The
PQC-based methods have a bottleneck on the number of sensors due to POVM con-
siderations, but we are still limited in practice nevertheless due to training time and
GPU memory; thus, we use a maximum of 16 sensors in the first level or in any block
of the second level. This limits the training time to at most several hours and GPU
memory requirements to 8-16 GB. We discuss more details on the number of sensors
used at various levels and blocks, below. Finally, each grid cell is of size 10m x 10m
in all settings, and the transmitter can be anywhere in the given area except that the
minimum distance between any sensor and transmitter is bm.

Two-Level Schemes: Blocks and Sensors Used. As described in §4.3, for a grid N x N,
if N as a perfect square, the grid is divided into v/N x v/N blocks—with the first-level
localizing the transmitter into one of the blocks, and the second-level localizing the
transmitter into a cell within the block. However, in this section, to get a better
insight into the performance trends, in this section, we have also considered N values
that are not perfect squares. For such N values, we have determined block sizes as

5We need 256 matrices each of size 2'2 x 2!2, with each matrix element being a complex number
requiring 16 bytes.
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Localization Performance in 16x16 Grid
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Figure 4.7: The performance of OneLevel, POVM-Loc, PQC-0ne, PQC-Two for varying
sensor number and a 16 x 16 grid.

integers close to the v/N; e.g., for a 12 x 12 grid, we divided the grid into 4 x 4 blocks
each of 3 x 3 cells. In terms of the number of sensors at each level—we use up to 16
sensors in the first level of localization, but in the second level we always use exactly
4 sensors per block irrespective of the block/grid size.

Performance Metrics. We use the Localization error (L., in meters) as the
main metric to evaluate our localization schemes. L., is defined as the distance
between the actual location of the transmitter and the predicated location. In all
plots except the CDF plots, average L, refers to the average localization error over
many TX locations; in the CDF plots, the distribution is over many TX locations.

4.5.2 FEvaluation Results

In our evaluation, we evaluate the performance of our proposed four localization
algorithms’ performances for varying grid size and number of quantum sensors. Note
that, for one-level algorithms, the number of sensors is the total number of sensors
used, while for the two-level algorithms, the number of sensors parameter is the
number of sensors used in the first/coarse level (recall that, in the second level, we
use only 4 sensors for each block).

Varying Grid Size. Fig. 4.6 shows the performance of all four algorithms with
varying grid sizes when the number of quantum sensors is eight. We observe that
the PQC-based methods have lower localization error than the QSD-based methods,
and the two-level schemes generally perform better than one-schemes—except that
the POVM-Loc performs worse than OneLevel for smaller grid sizes.® The results show

6This is likely because the QSD problem at the first/coarse level has a high error. The high error
here is due to all cells being at the border edges, making the quantum state discrimination hard.
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Figure 4.8: The cumulative probability of L., of OneLevel, POVM-Loc, PQC-0One,
PQC-Two for a 16 x 16 grid and 8 quantum sensors.

the power of a well-trained parameterized hybrid circuit and the effectiveness of two-
level schemes. More specifically, we observe that for a 16 x 16 grid, the average L.,
of PQC-Two is 4.9m, which is almost half of the average L, of PQC-One at 8.5m.
Similarly, the L., of POVM-Loc is also almost half of the L, of OneLevel, i.e., 9.6m
vs 18.3m.

Varying Number of Sensors. Fig. 4.7 shows the average L, in a 16 x 16 grid
with a varying number of quantum sensors. As expected, we observe that the L,
improves with an increasing number of quantum sensors, for all four schemes. For the
PQC-Two scheme, we observe that the L., improvement from 8 sensors to 16 sensors is
minimal, i.e. 4.9m vs 4.7m. This is because having 8 sensors in the first/coarse level
seems sufficient to determine the block, and then, in the second level, each block will
always have 4 sensors associated with it (performance in the fine level is the same).

CDF. Fig. 4.8 shows the cumulative distribution function of L, for four methods
when the grid size is 16 x 16 and the number of sensors is 8. This plot gives insight
into the distribution of Le, over different TX locations, compared with Fig. 4.7 which
shows only average L., across many TX locations. Here, the distribution is over
256 TX locations—one random TX location per cell for 256 cells in the 16 x 16
grid. We observe, as expected, that the two-level schemes are better than the one-
level schemes, and the PQC-based methods are better than the QSD-based methods,
except that POVM-Loc has a better CDF plot than PQC-0ne up to the 83-th percentile.
The above exception implies that POVM-Loc has a higher number of locations with
large L, compared with PQC-0ne; this is likely due to POVM-Loc incurring errors in
determining the block at the first/coarse level, which can lead to large localization

The neighboring two cells across the border of two blocks are close, thus hard to determine which
block the cell is in.

88



Performance of Localization Algorithms

100+ ¢ —
Q O,
80 -
§ 60 -
]
(1] o
|8 L \
O 40
'
20 -
- = QSD-One o= PQC-One

°
—eo— QSD-Two —o— PQC-Two

052 4axa 6x6 8x8 10x10 12x12 14x14 16x16

Grid Size

Figure 4.9: The performance of OneLevel, POVM-Loc, PQC-0ne, PQC-Two for varying
grid size and 8 sensors.

eITrors.

Discrete Setting: In the previous evaluation results, we have considered the prac-
tical continuous setting wherein the transmitter can be anywhere in the area. To
evaluate the true performance of our QSD-based methods, which are fundamentally
classification strategies, we now evaluate the discrete setting wherein the transmit-
ter is located only at the center of a cell and the predicted output of a localization
method is the cell number of the transmitter. In this discrete setting, we evaluate
the performance metric of Classification Accuracy L,.. which is the percentage of
times the method is correct in predicting the cell number. Also, in this discrete set-
ting, the PQC-based methods use the Classification variant in the location predictor
component, while the QSD-based methods remain the same.

Fig. 4.9 shows the performance of the four algorithms with varying grid sizes when
the number of quantum sensors is eight. We observe similar trend for each algorithm
as well as similar relative trends among the algorithms as in the continuous setting.
We make two important observations:

1. First, in the QSD-based methods, the POVM-Loc is a significant improvement
over OneLevel (from 13% to 77% for grid side 16 x 16), which shows the effec-
tiveness of our two-level approach.

2. Second, for the largest grid size of 16 x 16, the L,.. for QSD-based POVM-Loc
is reasonable at 77% but is further improved impressively by PQC-Two at 97%;
this shows the effectiveness of our PQC-based methods. The 3% error here in
PQC-Two is mainly due to the errors in the first level of determining the block.

Also, we see that for lower grid sides, the POVM-Loc surprisingly performs worse than
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Figure 4.10: The performance of OneLevel, POVM-Loc, PQC-0One, PQC-Two for varying
sensor number and a 16 x 16 grid.

OneLevel; the reason for this is similar to the continuous case that determining the
blocks at the first level becomes more erroneous when the grid size is small.

Fig.4.10 shows the L, in a 16 x 16 grid for varying number of quantum sensors.
As expected, we observe that the L,.. improves with an increasing number of quantum
sensors. More importantly, the L,.. for PQC-Two is near-perfect at 99% with 16 sensors;
this shows the effectiveness of the two-level method as well as of the well-trained
parameterized hybrid circuits. As in the continuous-domain setting, we don’t show
the QSD-methods for 16 sensors, as it was infeasible to implement the QSD-based
methods for a large number of sensors.

4.6 Conclusion and Future Work

In this paper, we have developed effective schemes for an important quantum sensor
network application, viz., localization of a wireless transmitter. The work demon-
strates how a network of quantum sensors can collaborate to predict a parameter
(here, the location of an event/transmitter) that is received /sensed differently at dif-
ferent sensor locations (e.g., depending on the distance from the event). In particular,
this work shows the promise of quantum sensor networks in the localization of events
in general—one of the most important applications of classical sensor networks.

Our work has significant opportunities for improvement. In particular, one can
optimize the initial state of the sensors to further improve the localization performance
(note that, here, we have only used a uniform superposition initial state). In this
context, we are also interested in determining whether entangled initial states are
helpful; recent works [92, 93, 95| have shown that entangled states can be efficiently
distributed over a quantum network. In addition, one can consider general multi-
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level approaches and restricted forms of measurement, design parameterized quantum
circuits with noise [252], and develop techniques to distribute such circuits over a
quantum (sensor) network as in [87, 239, 240]. We plan to explore some of these
directions in our future work.
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Chapter 5

Optimizing Initial State of Detector
Sensors in Quantum Sensor Network

In this chapter, we consider a network of quantum sensors, where each sensor is a
qubit detector that “fires,” i.e., its state changes when an event occurs close by. The
change in state due to the firing of a detector is given by a unitary operator which is
the same for all sensors in the network. Such a network of detectors can be used to
localize an event, using a protocol to determine the firing sensor which is presumably
the one closest to the event. The determination of the firing sensor can be posed as a
Quantum State Discrimination problem which incurs a probability of error depending
on the initial state and the measurement operator used.

In this chapter, we address the problem of determining the optimal initial global
state of a network of detectors that incur a minimum probability of error in determin-
ing the firing sensor. For this problem, we derive necessary and sufficient conditions
for the existence of an initial state that allows for perfect discrimination, i.e., zero
probability of error. Using insights from this result, we derive a conjectured optimal
solution for the initial state, provide a pathway to prove the conjecture, and vali-
date the conjecture empirically using multiple search heuristics that seem to perform
near-optimally.

5.1 Introduction

Quantum sensors, being strongly sensitive to external disturbances, can measure var-
ious physical phenomena with extreme sensitivity. These quantum sensors interact
with the environment and have the environment phenomenon or parameters encoded
in their state, which can then be measured. Thus, quantum sensors can facilitate sev-
eral applications, including gravitational wave detection, astronomical observations,
atomic clocks, biological probing, target detection, etc. [206]. A study [10] has shown
the advantages of microwave quantum radar in the detection of a target placed in a
noisy environment by exploiting quantum correlations between two modes, probe and
idler. Estimation of a single continuous parameter by quantum sensors can be further
enhanced by using a group of entangled sensors, improving the standard deviation of
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measurement by a factor of 1/v/N for N sensors [96]. Generally, a network of sensors
can facilitate spatially distributed sensing; e.g., a fixed transmitter’s signal observed
from different locations facilitates localization via triangulation. Thus, as in the case
of classical wireless sensor networks, it is natural to deploy a network of quantum
sensors to detect/measure a spatial phenomenon, and there has been recent interest
in developing protocols for such quantum sensor networks (QSNs) 33, 82, 208, 210].

Initial State Optimization. Quantum sensing protocols typically involve four
steps [66]: initialization of the quantum sensor to a desired initial state, transforma-
tion of the sensor’s state over a sensing period, measurement, and classical processing.
Quantum sensor networks would have similar protocols. In general, the initial state
of the QSN can have a strong bearing on the sensing protocol’s overall performance
(i.e., accuracy). E.g., in certain settings, an entangled initial state is known to offer
better estimation than a non-entangled state [82, 208]. If entanglement helps, then
different entangled states may yield different estimation accuracy. Thus, in general,
determining the initial state that offers optimal estimation accuracy is essential to
designing an optimal sensing protocol. The focus of our work is to address this prob-
lem of determining an optimal initial state. Since an optimal initial state depends on
the sensing and measurement protocol specifics, we consider a specific and concrete
setting in this paper involving detectors. To the best of our knowledge, ours is the
only work (including our recent work [110]) to address the problem of determining
provably optimal initial states in quantum sensor networks with discrete outcome/-
parameters.!

QSNs with Detector Sensors. We consider a network of quantum “detector”
sensors. Here, a detector sensor is a qubit sensor whose state changes to a unique
final state when an event happens. More formally, a sensor with initial state [))
gets transformed to U [¢)) when an event happens, where U is a particular unitary
matrix that signifies the impact of an event on the sensor. Such detector sensors can
be very useful in detecting an event, rather than measuring a continuous parameter
representing an environmental phenomenon. More generally, we consider a network of
quantum detector sensors wherein, when an event happens, exactly one of the sensors
fires— i.e., changes its state as above. In general, a network of such detector sensors
can be deployed to localize an event — by determining the firing sensor and, hence,
the location closest to the event. Our paper addresses the problem of optimizing the
initial global state of such QSNs to minimize the probability of error in determining
the firing sensor.

Contributions. In the above context, we make the following contributions. We for-
mulate the problem of initial state optimization in detector quantum sensor networks.
We derive necessary and sufficient conditions for the existence of an initial state that
can detect the firing sensor with perfect accuracy, i.e., with zero probability of error.
Using the insights from this result, we derive a conjectured optimal solution for the
problem and provide a pathway to proving the conjecture. We also develop multi-
ple search-based heuristics for the problem and empirically validate the conjectured

IFor estimation of continuous parameters, some works [82, 224] exist that have shown that certain
initial states can saturate the quantum Cramer-Rao bound (also see §5.2.1).
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solution through extensive simulations. Finally, we extend our results to the un-
ambiguous discrimination measurement scheme, non-uniform prior, and considering
quantum noise.

5.2 IS0 Problem and Related Work

n Sensors

; %L_Jan_tum St.ate i
N \ — 4, iscrimination
U_’@' """" O — Firing Sensor
bn-1 i
[Y) {lo:)} Optimal POVM
Initial State Final States Measurement

Figure 5.1: IS0 Problem. Given n deployed quantum sensors, an event changes the
state of one of the sensors (i*" sensor in the figure) by a unitary operator U. Quantum
state discrimination with the optimal measurement is used to determine the firing
sensor. The IS0 problem is to determine the initial state (possibly, entangled) that
minimizes the probability of error in discriminating the potential final states. The
dashed lines connecting the sensors signify a potential entangled global state.

Setting. Consider n quantum sensors deployed across a geographical area, forming
a quantum sensor network. See Fig. 5.1. Each sensor stores a qubit whose state
may potentially change due to an event in the environment. Let [¢)) denote the
initial (possibly entangled) state of the n sensors. Let U be a unitary operator that
represents the impact of an event over a qubit in a sensor; here, U may describe the
rotation of a spin caused by a magnetic field or a phase shift induced in a state of
light by a transparent object. Let the two eigenvectors of U be {uy,u_}, and without
loss of generality, let the corresponding eigenvalues be {e*% e~} where 6 € (0, 180)
degrees; thus, U|us) = e |uy). Let |¢;) = (I® @ U @ I°"==D)|¢)), where U
appears in the " position and i € {0,--- ,n — 1}, represents the system’s state after
the event affects the i sensor. We assume that events in our setting affect exactly
one sensor with uniform probability.> We refer to the n possible resulting states {|¢;)}
as the final states; these final states have an equal prior probability of occurrence
on an event.

Objective Function P(|¢),U). When an event results in the system going to a par-
ticular final state |¢;), we want to determine the sensor (i.e., the index i) that is
impacted by the event by performing a global measurement of the system. For a
given setting (i.e., [¢) and U), let M (|¢)),U) be the optimal positive operator-valued

2In essence, we assume that sensors are sparsely deployed such that an event affects at most one
sensor, and that the event itself is uniformly likely to occur at the sensor locations. If there is no
prior information about the event’s location, then assuming uniform probability is reasonable. See
§5.8, where we consider the generalization of non-uniform probabilities.
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measure (POVM) measurement for discriminating the final states {|¢;)}, i.e., the
measurement that incurs the minimum probability of error in discriminating the final
states {|¢;)} and thus determining the index i given an unknown final state. Let
P(|1),U) be the (minimum) probability of error incurred by M (|¢)),U) in discrimi-
nating the final states {|¢;)}.

IS0 Problem Formulation. Given a number of sensors n and a unitary operator
U, the IS0 problem to determine the initial state [¢) that minimizes P(|¢)),U).
In other words, we wish to determine the initial state [¢)) that yields the lowest
probability of error in discriminating the final states when an optimal POVM is used
for discrimination.

For clarity of presentation, we consider only the minimum error measurement
scheme, till the last Section 5.8.1 where we extend our results to the unambiguous
discrimination measurement scheme.

Potential Applications. One of the main applications of detector sensor networks is
event localization. Assume we have some critical locations to monitor, and we place
one quantum detector at each critical location. Then, a network of quantum detectors,
wherein a detector’s state changes (as represented by the unitary U), can be used to
localize the event occurrence—as the location of the firing detector also gives the
event’s location. The event in the above scenario could be anything that can be
represented by a unitary U, e.g., an event may represent the presence of a magnetic
field, an acoustic event (e.g., an explosion), a signal transmission that can be detected,
or movement of a detectable object.

Paper Organization. The rest of the paper is organized as follows. We end this
section with a discussion on related work. In the following section (§5.3), we establish
a necessary and sufficient condition for three final states to be orthogonal—and hence,
the existence of an initial state such that P(|¢)),U) = 0. We generalize the result
to an arbitrary number of sensors in §5.4, and give an optimal solution for the IS0
problem when the orthogonality condition is satisfied. In §5.5, we use the insights
from §5.4 to derive a conjectured optimal solution for an arbitrary U and the number
of sensors; in the section, we also provide a pathway to proving the conjecture. In the
following sections, we develop search-based heuristics for the problem (§5.6) and use
these heuristics to empirically validate our conjectured solution through simulations
(85.7). In §5.8, we consider generalizations related to unambiguous discrimination
measurement, non-uniform prior probabilities, and quantum noise. Finally in §5.9,
we conclude and discuss some potential future work.

5.2.1 Related Work

Continuous Parameter Estimation using Quantum Sensors. In prior works [82,
221], protocols have been studied for estimation of a single parameter using multiple
sensors [96], multiple parameters [149, 208|, a single linear function over parame-
ters [82, 208, 233|, and multiple linear functions [7, 221]. Quantum state estimation
considering nuisance parameters is reviewed in [241]. These and many other works [82,
90, 208] have also investigated whether the entanglement of sensors offers any advan-
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tage in improving the estimation accuracy. Some of the above works have optimized
the measurement protocols (e.g, [82, 210]) in the addressed settings, but none of
the above works have addressed the problem of initial state optimization. To the
best of our knowledge, all prior works have modeled the sensed parameters in the
continuous domain, e.g., these parameters could be the strength of a magnetic field
at different locations. In contrast, in some sense, our work focuses on the estimation
of discrete-valued parameters.

Optimal State Discrimination. There has been a lot of work on quantum state
discrimination [13, 16, 20, 21| — wherein the goal is to determine the optimal mea-
surement protocol to minimize the probability of error in discriminating a set of given
states. A closed-form expression is known only for two states and very specialized
cases for a larger number of states. However, numerical techniques exist (e.g., SDP-
based [81]). Our work differs in the following ways: (i) The set of final states we want
to discriminate is very specialized. (ii) Our goal is to optimize the initial state—that
minimizes the probability of error using an optimal POVM (in some sense, we im-
plicitly assume that an optimal POVM for a given set of final states can be derived).

Initial State Optimization. Recent works have used variational circuits to seek
an optimized probe state for a set of sensors, in the context of classical supervised
learning [330] and (continuous) parameter estimation [136] under noise.  In ad-
ditional, a recent work [80] investigates estimation accuracy with different levels of
entanglements for measuring a linear combination of field amplitudes. In contrast,
we seek provably optimal initial state solutions. To the best of our knowledge, the
only other work that has investigated the initial state optimization problem is our
recent preliminary work [110] where we address the same problem as in this paper.
In [110], we give an optimal solution for the case of n = 2 sensors, and, for the general
case of n sensor, we derive close-form expressions for the probability of error for a
heuristic solution for a restricted class of initial states, and investigate the benefit of
entanglement in the initial state.

5.3 Orthogonality of Final States for Three Sensors

Note that an optimal solution for two sensors (i.e., n = 2) is known and is based on
geometric ideas (See [110] and §5.5); however, the solution for two sensors doesn’t
generalize to higher n. For n > 3, instead of directly determining the optimal solution,
we first focus on determining the the conditions (on U) under which the optimal initial
state yields orthogonal final states. We start with the specific case of n = 3, as this
gives us sufficient insight to generalize the results to an arbitrary number of sensors.
Determining the conditions for orthogonality also helps us in conjecturing the optimal
initial state for general settings.

The basic idea for deriving the condition on U that yields orthogonal final states
(i.e., the below theorem) is to represent the final states on an orthonormal basis
based on U’s eigenvalues and eigenvectors; this allows us to derive expressions for the
pairwise inner products of the final states, and equating these products to zero yields
the desired conditions. We now state the main theorem and proof for three sensors.
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Theorem 1. Consider the IS0 problem, with the unitary operator U, initial state
|Y), and final states {|¢;)} as defined therein. Recall that the eigenvalues of U are
{et® =Y. When the number of sensors n is three, the following is true.

For any 0 € [60,120] degrees, there exists a |1) such that |¢o),|p1),|d2) are
mutually orthogonal. Also, the converse is true, i.e., for 6 € (0,60)U (120, 180), there
is no initial state that makes |¢o) , |d1) , |d2) mutually orthogonal.

PROOF: Let us first start analyzing the inner product of |¢y) and |¢1). Let
20 = (¢po|p1). We see that:

2= U Ie)IoURI)|)
= @ (UTeUI) )

Since U is unitary, its eigenvectors u_ and u, are orthogonal. It is easy to confirm that
the following eight eigenvectors of the middle-part (UT®@ U @ I) form an orthonormal
basis: {|u_u_u_), |lu_u_uy),|u_usu_),|u_uiuy), |usu_u_), lusu_uy), jlusuiu_),
luyuyuy)}. We denote these eight eigenvectors as {|j)| j = 0,---, 7}, with the |j)
eigenvector “mimicking” the number j’s binary representation when u_ and u, are
looked upon as 0 and 1 respectively (so, |3) is |u_uiuy)).

We can write the initial state |¢) in the {|j)} basis as

W)= _vili)-
J
Thus, we get
2= I(UTRUST) Y v;l)
J
= [t
J
where {eg, e, ..., er} are the eigenvalues corresponding to the eight eigenvectors {|j)}.

As the eigenvalues are 1,1, et e+ =20 =20 1 1 we get:

20 = (12l + [Ws])e ™ + (Johal* + s ) e ™ + (Jo]* + [ + Jobo|* + [v2 ) (5.1)

Similarly, for z; = (¢1]¢2) = (V| (I @ UT @ U) |¢b), we get the below. Note that, in
the expression for z;, the order of eigenvalues corresponding to the coefficients |1);|?
is 1,et20 =210 1 1,et2% 729 1 (see Observation 1 in §5.4). Thus, we get:

21 = ([a]* + 105 e™? + (Jehal® + [v6]*) e + (Jvoo]? + [ws]? + [val® + [07*) (5.2)
Similarly, for 2o = (¢g|p2) = (V| (UT @ I @ U)[), we get:
20 = (|t1|* + |31 e + (Johal® + |96 ) e + (Jvoo]? + [l + [¥s]” + [v7]*) (5.3)

Now, for |¢o),|#1), |¢2) to be mutually orthogonal, we need zy = 21 = 2z = 0.
This yields the following seven Equations 5.4-5.10.
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Imaginary Equations. For the imaginary parts of 2y, 21, 22 to be zero, we need the
following to be true. We refer to these equations as the Imaginary equations.

|iha|* + |1hs|* = [a]? + [s]?
1”4 |1s]* = [2]? + 06|
1 |* + |s]* = [va]® + 6]

Real Equations. For the real parts of zg, 21, 22 to be zero, we need the following to be
true. We refer to these equations as the Real equations.

—([al® + |9h3]* + [thal® + [1h5]?) cos(20) = [ + |91 |* + [v6|* + |97 ]?
— (11 * + 15| + [a]? + [t6]*) cos(20) = [¢ol* + [¥3]* + [tha]* + |17 ]?
—([n]* + [¥s]” + [al” + [s]*) cos(20) = [vool* + oo + [ehs]* + [¢h7]?
Above, the terms with cos(260) are on the left-hand side (LHS), and the remaining

terms are on the right-hand side (RHS).
Finally, as 1; are coefficients of |¢), we also have

Sl =1 (5.10)

Existence of [¢)) when 6 € [60,120] that yields mutually orthogonal final
states. Let us assume [¢g|> = [17]* = y and [1;|*> = x for 1 < i < 6. These satisfy
Equations 5.4-5.6, and the Equations 5.7-5.9 yield:

—4z cos(20) = 2x + 2y
—(2cos(20) + Nz =y

The above has a valid solution (i.e., z,y > 0, and 2y + 62 = 1 from Eqn. 5.10) when
cos(20) < —1 i.e., when 6 € [60, 120].
When 6 € (0,60) U (120, 180), no existence of |¢) that yields mutually orthog-
onal final states. Let a = |1g|*+|¢7|*>. Then, by using Equation 5.4 in Equation 5.7
and so on, we get the following:

—2(J9hal* + [t5]*) cos(260) = a + [¥n]* + [v]”

=2(|¢2|* + [t6]*) cos(20) = a + [Whs]* + [1ha]?

—=2([tn[* + [13) cos(26) = a + [1a]” + [¢5?

Adding up the above equations and rearranging, we get:

6
(—2cos(20) — 1) Y _|vy]” = 3a
j=1

Thus, we need (—2cos(26) — 1) > 0, as a > 0, i.e., we need cos(26) < —3. Thus,
for 6 € (0,60) U (120, 180), there is no solution to the above equations. Note that we
have not used any symmetry argument here. ]
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5.4 Orthogonality of Final States for n Sensors

In this section, we generalize the result in the previous section to an arbitrary number
of sensors greater than 3.3

Theorem 2. Consider the IS0 problem, with the unitary operator U, initial state
|v), and final states {|¢;)} as defined therein. Recall that the eigenvalues of U are
{et® e=®Y. Let n > 3 be the number of sensors. The following is true.

For any 6 € [T,180 — T| degrees, there exists a |1)) such that the set of n states
{|#:)} are mutually orthogonal, where T is given by:

-y ()

Note that T € (45,90) degrees. In particular, the values of T' for increasing n are: 60
(n=4), 65.9 (n=5,6), 69.3 (n=1,8), 71.6 (n = 9,10).

The converse of the above is also true, i.e., for 8 € (0,T) U (180 — T, 180), there
is no initial state 1) that makes {|p;)} mutually orthogonal. n

Before we prove the theorem, we define the partitioning of coefficients and state
an observation.

Partitioning the Coefficient-Squares {|¢;]*} into “Symmetric” Sets. Note
that just renumbering the sensors does not change the optimization problem. Based
on this intuition, we can group the eigenvectors |j) (and the corresponding coeffi-
cients 1;’s) into equivalent classes. Let n be the number of sensors. Since only the
coefficient-squares {|1;|*} appear in the expression for pairwise inner-products of the
final states, we just partition the coeflicient-squares rather than the coefficients {1}
themselves—as only the coefficient-squares are relevant to our proposed solution and
discussion. We partition the set of 2" coefficient-squares into n + 1 symmetric sets
{Sk} as follows:

Se = {|w;]* | |j) has k number of u;} VO<k<n

For each 0 < k < n, let R, be the number of coefficient-squares from S, in the RHS
of a Real equation, and Ly be the number of coefficient-squares from S; in the LHS
of Real equation. (Note that, by Observation 1 below, for any k, the number of
coefficient-squares of Sy, that are in the RHS (LHS) is the same for all Real equa-
tions.) For the case of n = 3, we have Sy = {|v)o|*}, S1 = {|V1]?, [a]?, [¢0a|?}, S2 =
{|¢3|2;|¢5|2;|¢6‘2},S3 = {|1/J7|2} AISO, we have RQ = R1 = R2 = Rg = 1, while
Lo=L3=0, Ly = Ly =2. We will use the above terms to prove the theorem.

3For two sensors, the single equation corresponding to the Equations 5.7-5.9 can be made equal
to zero on both sides with 6 = 45 degrees and zeroing all coefficients on the RHS (which is possible
due to lack of other equations).
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Observation 1. For a Real equation E corresponding to the inner-product of final
states ¢; and ¢; (for 0 <i,5 <n—1), a coefficient-square |1,.|* appears in the RHS
of the equation E iff the bit-representation of the number r has either both 0’s or both
1’s at the " and 7 most-significant bits. i

Lemma 2. Forn > 3,
R. [3]—-1

MINI<k<(n—1)F = oy
<k<( )Lk (51

Thus, for the given T in Theorem 2, Lycos(2T) + Rx = 0 for some k, and Ry +
cos(2T )Ly, > 0 for all k.

PROOF: For n > 3 and 0 < k < n, from Observation 1 we get that:
n—2 n—2
me= (i) ()
n—2
L, =2 .
=2 )

Above, we assume (i) =0if y > z or y < 0. Now, a simple analysis shows that:

. (=) + (")) _ 31 -1
2<k<(n—-2) 9 (n—Q) (%“

k—1
Since, forn >3, Ry =R,_.1=n—2and L, = L, = 2, we get the lemma. [

Observation 2. Let ). x; = c, for a set of variables x; > 0 and a constant ¢ > 0.
The equation ), c;x; = 0, where ¢; are some constants, has a solution if and only if
(i) at least one of the constants is positive and one of the constants is negative, or
(ii) one of the constants is zero. i

5.4.1 Proof of Theorem 2.

PROOF: If 6 € [T, 180 — T. Let the set of all coefficient-squares in each Sy to be
equal to xy, for each k. Then, each Imaginary equation becomes:

n n

> (Li/2)we =Y (Li/2)xx (5.11)

k=0 k=0

Each Real equation becomes:

- COS(20) Z kak = Z Rkl’k (512)
k=0 k=0
> (Ri + cos(20) i)z = 0 (5.13)
k=0
By Observation 2, the above equation (and thus, all Real equations) can be made
true by appropriate choices of xj since
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1. Ry + cos(20) Ly is positive for k =0 as Ly = 0 and Ry = 1.
2. Ry +cos(20) Ly, is negative or zero for some k by Lemma 2 when 0 € [T, 180—T].

If € (0,7) U (180 — 7', 180). Adding all the Real equations gives the following. Be-
low, f(j) = k such that |¢;]|* € Sk.

- Ly - Ry
J 2 J) 2
~eos(20) 3 () G = 3 () 6w
j=0 j=0
The above gives:
271/
1
1510 ‘(Rf )+ co8(20) L) [ty ]* = 0

The above equation doesn t have a solution as (Rj + cos(20)L;) > 0 for all k for
6 € (0,7) (and thus, for € (180 — T, 180)) for by Lemma 2. ]

Optimal Initial State under Theorem 2’s Condition. Based on the above

theorem, we can derive the optimal initial state under the condition of Theorem 2;
the optimal initial state yields mutually-orthogonal final states.

Corollary 1. Consider the ISQ problem, with the unitary operator U, initial state
|Y), and final states {|¢;)} as defined therein. Recall that the eigenvalues of U are
{et® e}, Let n > 3 be the number of sensors. When 0 € [T,180 — T degrees,
where T is defined in Theorem 2, an optimal initial state 1)) that yields mutually
orthogonal final states n states {|¢;)} is given as follows.*

Let S; be the partition that minimizes the ratio R;/L;. It follows from Lemma 2’s
proof (we omit the details) that | = %], and Ry, Ly, and S; are given by:

5]
oM — 1
I31-1
2[2] -1

Ll = ’Sll X

= |S] x

15 = <LnJ)

Then, the coefficients of an optimal initial state |1), when 6 € [T,180 — T| degrees
with T defined in Theorem 2, are such that their coefficient-squares are as follows:

1

2 .
Vil |S;| — cos(20)L; — R, Y )" €S
2 —cos(20)L; — Ry p
il = S| — cos(20)L; — R, V|40 € So
;)2 =0 Vo & 51U,

4We note that there are many optimal solutions.
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PRrROOF: The proof of the above Corollary easily follows from the fact that each
coefficient-square of the solution is positive (from Lemma 2), and that the coefficient-
squares of the solution satisfy Eqn. 5.13 (and Eqn. 5.11 trivially) as well as the
constraint in Eqn. 5.10. [

5.5 Conjectured Optimal IS0 Solution

Provably Optimal Solution for Two Sensors. The above joint-optimization
problem for the case of 2 sensors can be solved optimally as follows. First, we note
that the minimum probability of error in discriminating two final states for a given
initial state [¢) is given by:

1

P.=5 (1-VI=IWIT U W)P). (5.14)

Now, when the eigenvalues of U are {e™? =%}, as in our IS0 problem, then the
initial state [¢) that minimizes the above probability of error for 0 < # < 7/4 and
37/4 < 0 < 7 can be shown to be the following entangled state:

1
¥) = E(MWM +|u)ug)). (5.15)

For /4 < 6 < 3m/4, there exists an initial state that yields orthogonal final states.
The above follows from the techniques developed to distinguish between two unitary
operators [63]; we refer the reader to our recent work [110] for more details. Unfortu-
nately, the above technique doesn’t generalize to n greater than 2, because for greater
n, there is no corresponding closed-form expression for minimum probability of error.

Conjectured Optimal Solution For n Sensors. The main basis for our conjec-
tured optimal solution is that an optimal initial state must satisfy the symmetry of
coefficients property which is defined as follows: an initial state satisfies the symmetry
of coefficients property, if for each k, the set of coefficient-squares in Sy have the same
value. The intuition behind why an optimal initial state must satisfy the symmetry
of coefficients property comes from the following facts:

1. The optimal initial state, under the condition of Theorem 2, satisfies the sym-
metry of coefficients property.

2. Since sensors are homogeneous, “renumbering” the sensors doesn’t change the
optimization problem instance fundamentally. Thus, if 1) is an optimal initial
state, then all initial state solutions obtained by permuting the orthonormal
basis {|j)} corresponding to a renumbering of sensors,” must also yield optimal
initial states.® Now, observe that an initial state that satisfies the symmetry

®Note that renumbering the sensors is tantamount to renumbering the bits in the bit-
representation of j integers of the orthonormal basis {|j)}. See Theorem 3’s proof for more details.

6Note that this fact doesn’t imply that the optimal solution must satisfy the symmetry of coeffi-
cients property.
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of coefficients property remains unchanged under any permutation of the or-
thonormal basis {|j)} corresponding to a renumbering of sensors.

3. Similarly, due to the homogeneity of sensors, an optimal initial state must yield
“symmetric” final states—i.e., final state vectors that have the same pairwise
angle between them. Now, from Observation 1, we observe that an initial state
that satisfies the symmetry of coefficients yields final states such that their
pairwise inner-product value is the same.

Finally, it seems intuitive that this common (see #3 above) inner-product value of
every pair of final states should be minimized to minimize the probability of error in
discriminating the final states. Minimizing the common inner-product value within
the problem’s constraints yields the below optimal solution conjecture.

Conjecture 1. Consider the IS0 problem, with the unitary operator U, initial state
|¥), and final states {|¢p;)} as defined therein. Recall that the eigenvalues of U are
{e* e}, Letn > 3 be the number of sensors. For a given 6 € (0, T|U[180—T, 180),
degrees, where T is from Theorem 2, the optimal initial state |1) for the IS0 problem
1s as follows.

Let S; be the partition that minimizes (R, + cos(20)L;)/(R; + L;), where R, and
L; are as defined in the previous section. The coefficients of the optimal solution are
such that their coefficient-squares are given by:

;1> =1/1Si] ¥ |uy* € S,
1| =0 V[ ¢ S

O

We note the following: (i) The above conjecture optimal solution is provably
optimal for n = 2, with 7' = 45 degrees; see Eqn. 5.15 above and [110]. (ii) The above
conjectured optimal solution yields orthogonal final states for # = T'. In particular,
it can be easily shown that the above conjectured optimal solution is the same as
the solution derived in Corollary 1 for # = T'. (iii) The proposed state in the above
conjecture is a Dicke State in the basis made up of |u_) and |uy). Dicke states can
be prepared deterministically by linear depth quantum circuits in a single quantum
computer [17], and be prepared in a distributed quantum network as well [219]. We
now show that the above conjecture can be proved with the help of the following
simpler conjecture.

Proving Symmetry of Coefficients. Based on the intuition behind the above
Conjecture 1, one way to prove it would be to prove the symmetry of coefficients—
i.e., the existence of an optimal solution wherein the coefficient-squares in any Sy
are equal. Proving symmetry of coefficients directly seems very challenging, but we
believe that the below conjecture (which implies symmetry of coefficients, as shown
in Theorem 3) is likely more tractable. Also, the below Conjecture has been verified
to hold true in our empirical study (see §5.7).
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Conjecture 2. For a given U, consider two initial states [1) = > 1, |j) and [¢') =
J
> U5 13) such that (i) they are two unequal coefficient-squares, i.e., for some j,

J
|ih;|* # [W5)?, and (i) they have the same objective function value, i.e., P([¢) ,U) =
P(|¢"),U). We claim that the “average” state given by

|2 + /|2
‘wavg> :Z M‘j>

has a lower objective function value, i.e., P(|tag),U) < P(|¢'),U). i

We now show that the above Conjecture is sufficient to prove the optimal solution
Conjecture 1.

Theorem 3. Conjecture 2 implies Conjecture 1.

PrOOF: We start by showing that Conjecture 2 implies the symmetry of coef-
ficients, and then minimize the common pairwise inner-product values of the final
states.

Conjecture 2 implies Symmetry of Coefficients. First, note that for a given initial
state [¢), we can generate (n! — 1) other “equivalent” initial states (not necessar-
ily all different) by just renumbering the sensor (or, in other words, permuting the
basis eigenvectors). Each of these initial states should yield the same objective value
P() as that of [¢), as it can be shown that they would yield essentially the same set
of final states. As an example, the following two initial states are equivalent (i.e.,
yield the same objective value P()); here, the sensors numbered 1 and 2 have been
interchanged.

Yo [0) 4+ by [1) + 12 |2) 4+ 13 [3) + by |4) + 15 |5) 4 6 [6) + 107 |T)
Yo [0) + b2 [1) + 91 |2) 4+ 13 [3) + 1P |4) + 16 |5) 4 5 [6) + 107 |T)

More formally, for a given initial state [¢) = >, ¢;[j), a permutation (renumbering
of sensors) 7 : {0,1,...,n— 1} — {0,1,...,n — 1} yields an equivalent initial state
given by [¢) = > |on(j)|[j) where IT : {0,1,...,2" — 1} — {0,1,...,2" — 1} is
such that II(j) = ¢ where the bits in the bit-representation of j are permuted using
7 to yield i. It can be shown that the set of final states yielded by [¢) and |¢’) are
essentially the same (modulo the permutation of basis dimensions), and hence, they
will yield the same probability of error and thus objective value P().

Now, consider an optimal initial state [¢)) = . [¢;[[j) that doesn’t have sym-
metry of coefficients—i.e., there is a pair of coeflicient-squares |¢;|* and |¢;|* such
that they are in the same set S; but are not equal. The numbers ¢ and j have the
same number of 1’s and 0’s in their binary representation, as |¢;|* and |¢;|*> belong
to the same set Si. Let II be a permutation function (representing renumbering of
the n sensors) such that I1(¢) = j. Consider an initial state [¢') = >~ ¥n(;) [J), which
has the same probability of error as [¢)). Now, applying Conjecture 2 on [¢) and
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|¢') yields a new initial state with a lower objective value P(), which contradicts
the optimality of [¢)). Thus, all optimal initial-states must satisfy the symmetry of
coeflicients.

Maximizing the Pairwise Angle. Now, an optimal initial state with symmetry of co-
efficient will yield final states that have the same pairwise inner-product values (this
follows from Theorem 2’s proof). Also, we see that each pairwise inner-product value
is (see Eqns.5.11 and 5.13 from §5.4):

n

> (R + cos(20) Ly, (5.16)

k=0

with the constraint that .

> (B + Li)ay = 1.
k=0
When 6 € (0,7]. By Lemma 2, note that (Ry + cos(20)Lg)zr > 0 for all k, for
0 € (0, 7). We show in Lemma 3 below that, for states with equal and positive pair-
wise inner-products, the probability of error in discriminating them using an optimal
measurement increases with an increase in the common inner-product value. Thus,
the optimal initial state must minimize the above inner-product value expression in
Eqn. 5.16. Now, from Observation 3 below, the inner-product value above is mini-
mized when the coefficient-squares in the S; that minimizes (Ry + cos(20)Ly)/|S;| are
non-zero, while the coefficient-squares in all other Sy’s where k # [ are zero. This
proves the theorem.
When 6 € [180 — T',180). Note that cos(20) = cos(2(180 — 6)), and since (180 —
0) € (0,7] for 0 € [180 — T,180), we can use the same argument as above for this
case as well. |

Observation 3. Let ) . a,x; = 1, for a set of positive-valued variables x; and positive
constants a;. The expression ), c;x;, where constants ¢;’s are all positive, has a
minimum value of min; ¢;/a; which is achieved by x; = 1/a; for the i that minimizes
min; ¢;/a;. O

Minimizing Probability of Error in Discriminating “Symmetric” Final States.
We now show, using prior results, that if the pairwise inner products (and hence,
angles) of the resulting final states |¢;) are equal, then the probability of error in
discriminating them is minimized when the pairwise inner-product values are mini-
mized.

Lemma 3. Consider n states to be discriminated ¢o, ¢1, . .., pn—1 such that (¢;|¢;) =
x, for all 0 < 4,7 < n—1 and i # j. The probability of error in discriminating
b0, D1, - - ., On_1 using an optimal measurement increases with an increase in x when
xz > 0.

PROOF: The optimal /minimum probability of error using the optimal POVM for
a set of states with equal pairwise inner products can be computed to be [84]:

Pe=1—%<\/1—(n_131(1_$)+(n—1) 1;’”)
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Let the inner term be y, such that P, = 1 — (y*/n). The derivative of y with respect
to x is given by:

n—1 ( 1 1 )

2vn \Vnzr+1—z J1—-z/)
The above is negative for x > 0. Thus, for a given number of sensors n and x > 0,
the probability of error P, increases with an increase in . ]

Summary. In summary, we propose the Conjecture 1 for the optimal solution for the
IS0 problem, based on the symmetry of coefficients. We also propose a Conjecture 2
which seems simpler to prove and provably implies Conjecture 1. We empirically
validate these conjectures using several search heuristics in the following sections.

5.6 Search Heuristics

Algorithm 1: FindNeighbor(x, i, stepSize)

Input: The initial state x, ith element of x, step size

Output: A neighbor x’ of x

X X

direction < Generate a random unit 2D-vector ;

direction’ < convert direction to complex number ;

x'[i] < X'[i] + direction’ x stepSize ;

x' < Normalize(x') ; /! x'x=1
return x’ ;

[= I N N

In this section, we design three search heuristics to determine an efficient IS0
solution, viz., hill-climbing algorithm, simulated annealing, and genetic algorithm. In
the next section, we will evaluate these heuristics and observe that they likely deliver
near-optimal solutions. We start with a numerical (SDP) formulation of determining
an optimal measurement, and thus, develop a method to estimate the objective value
P(|1),U) of a given initial state |¢).

Semi-Definite Program (SDP) for State Discrimination. We now formulate
a semi-definite program (SDP) to compute the optimal measurement for a given ini-
tial state; this formulation allows us to determine the optimal measurement using
numerical methods, and thus, facilitates the development of the search heuristics for
the ISO problem as described below. Given a set of (final) quantum states, deter-
mining the optimal measurement that discriminates them with minimum probability
of error is a convex optimization problem, and in particular, can be formulated as
a semi-definite program [81]. Let the final states be {|¢;)} with prior probabilities
pi, where > .p; = 1. Let {I;} be the POVM operator with II; being the element
associated with the state |¢;), and let T'r() be the trace operator. The SDP program
to determine the optimal measurement operator can be formulated as below, where
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the objective is to minimize the probability of error.

n—1
ﬁﬂé% 1—- ;piTTG_[i i) (i) (5.17)
subject to the constraints:
IL=0, 0<i<n-—1 (5.18)
. I, =1 (5.19)
i=0

Above, Eqn. 5.18 ensures that every measurement operator is positive semidefinite,
while Eqn. 5.19 ensures that the set of measurement operators is a valid POVM,
i.e., the summation of all measurement operators is the identity matrix. Eqn. 5.17
minimizes the probability of error expression for a given POVM measurement and set
of quantum states.

The Objective Value of an Initial State. To design the search-based heuristics,
we need a method to estimate an objective value for a given initial quantum state that
evaluates its quality. In our context, for a given initial state |¢)), the IS0 problem’s
objective function P(]¢),U) could also serve as the objective function in a search-
based heuristic. P(|¢),U) can be directly estimated using the Eqn. 5.17 above.

P(),0) =1~ - niTr(16,) (6] (5.20)

where |¢;) = (I®'QUI®==1) |¢)) are the final states, and the optimal measurement
{II;} can be computed numerically using the SDP formulation given above.

Based on the above method to estimate the objective function P(), we can develop
search heuristics for the IS0 problem; at a high level, each heuristic searches for a
near-optimal initial state by starting with a random initial state x and iteratively
improving (not necessarily in every single iteration) by moving to x’s better neighbor
based on the objective value P() of x.

Hill-Climbing” (HC) Search Heuristic. The Hill-climbing (HC) heuristic starts
with randomly picking an initial quantum state for the n-sensors, i.e., a 2" length
vector x of complex numbers with x'x = 1. During each iteration, we look into one
element of the state vector x at a time. And for each element, we look into four random
“neighbors” of the initial state (as described below), and pick the neighbor with the
lowest objective value P(). We repeat the process until reaching the termination
criteria, i.e., the improvement (if any) of moving to the best neighbor is smaller than
a threshold (i.e., 107%). We also set a minimum number of 100 iterations.

To find a neighbor of a quantum state, we update one element of the state vector
x at a time—by adding to it a random unit vector multiplied by a step size which

"In our context of a minimization problem, the heuristic actually descends into a valley of solu-
tions, but we stick to the Hill-Climbing name because that’s the common usage.
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Algorithm 2: HillClimbing(U, n)
Input: Unitary operator U
Input: Number of sensor n
Output: Initial State x

1 x < a random state vector with a length of 27;
2 bestObjective < P(x,U) ;

3 stepSize < 0.1 ;

a stepDecreaseRate < 0.96 ;

5 while Termination Condition Not Satisfied do
6 for i =1 to 2" do

7 neighbors < Find 4 neighbors, call FindNeighbor(x, i, stepSize) four

times ;

8 bestStep < 0 ;

9 for j =1 to4do

10 objective < P(neighbors|j]|,U) ;

11 if objective < bestObjective then
12 bestObjective < objective ;

13 bestStep < j ;

14 end

15 end

16 if bestStep is not 0 then

17 | x < neighbors[bestStep) ;

18 end

19 end

20 stepSize < stepSize X stepDecreaseRate
21 end

22 return x ;

decreases with each iteration (a post-normalization step is done to maintain x'x = 1).
For each element, we look into four random neighbors instead of one, to increase the
chance of discovering better neighbors. See Algo. 1 for the neighbor-finding procedure
and Algo. 2 for the overall Hill Climbing heuristic.

Simulated Annealing (SA) Heuristic. The above Hill-climbing heuristic can
get stuck in a local optimal. Thus, we also develop a more sophisticated Simulated
Annealing (SA) [134] metaheuristic which has a mechanism to jump out of a local
minimum. By convention, SA applies the concept of energy E. In our context, the
energy is the equivalent of the objective function value P(). In essence, SA allows
itself to transition to solutions with worse objective values with a small (but non-zero)
probability. In SA, the transition probability to a new neighbor state depends upon
the improvement AFE in the objective function and is given by:

P(AE) = min(1, e 2F/T), (5.21)

where 7' is the temperature. We note that when the new state’s objective value is
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Algorithm 3: SimulatedAnnealing(U, n)
Input: Unitary operator U
Input: Number of sensor n
Output: Initial State x

1 x < a random state vector with a length of 27;
2 stepSize < 0.1 ;

3 T < Standard deviation of some x neighbors’ objective values ;
a stepDecreaseRate < 0.96 ;

5 coolingRate < 0.96 ;

6 stdRatio <1 ;

7 while Termination Condition Not Satisfied do
8 for i =1 to 2" do

9 for j =1 to4do

10 x' < FindNeighbor(x, i, stepSize) ;
11 E, + P(x,U) ;

12 E, < P(x',U) ;

13 AFE + EQ — El ;

14 if AE <0 then

15 ‘ X X

16 else

17 ‘ X < x' with probability e=2E/T

18 end

19 end

20 end

21 stepSize < stepSize X stepDecreaseRate ;
22 std < Standard dev. of x recent neighbors’ scores;
23 stdRatio < stdRatio X coolingRatio ;

24 T < min(T % coolingRate, std x stdRatio) ;
25 end

26 return x ;

lower, then AFE is negative, and thus, P(AFE) is 1, and the new state is readily tran-
sitioned to. Same as in [143], we set the initial temperature as the standard deviation
of the objective value of several initial state’s neighbors. As the SA algorithm iter-
ates, the temperature T' gradually decreases. In our context, the following works well
and leads to fast convergence, compared to other standard equations used in other
contexts [140].

T, =min{(1 —¢€)T-1,(1 —€)"0p_1}, (5.22)

where o,,_; is the standard deviation of objective values of the latest ten neighbors
explored at the (n—1)"" iteration. SA uses the same neighbor-finding method (Algo. 1)
as in the previous Hill-climbing heuristic, with a similar termination condition as Hill-
climbing except that we allow a few iterations for improvement. The pseudo-code of
SA is shown in Algo. 3.
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Algorithm 4: GeneticAlgorithm(U, n)
Input: Unitary operator U
Input: Number of sensor n
Output: Initial State x
1 N < population size;
2 Xpp < a size N population of length 2" random state vectors;
3 while Termination Condition Not Satisfied do

4 ranks < compute Rank(X,op, U) ;

5 X, < an empty children population;

6 | while length(x),,) < size do

7 parents <— get two states by select(ranks,Xpop) ;

8 children < get two new states by twoPointCrossover(parents) ;
9 Do mutation for children ;

10 Add children to x,,,, ;

11 end

12 Xpop < the top IV of states in X0, + X3,
13 end

14 X < the best state in x,,, ;
15 return x ;

Genetic Algorithm (GA) Heuristic. The Genetic Algorithm (GA) is another
popular metaheuristic algorithm for solving optimization problems. Inspired by the
natural evolution of survival of the fittest [111], GA works by considering a “popula-
tion” of candidate solutions and creating the next generation iteratively [309], until
the best solution in a new generation does not improve from the best solution in the
previous generation by at least a threshold. In our context, the initial population
of candidate solutions is a set of random initial states. And candidate solutions are
evaluated by a fitness function, which is conceptually the same as our objective func-
tion P() (Eqn. 5.20) except that the fitness function is the higher the better while
P() is the lower the better. So, 1 — P() will serve as the fitness function for GA. The
pseudocode for GA is shown in Algo. 4. To create a new generation, we pick a pair of
candidate states as parents through the rank selection [129] and then generate a pair
of children states by using the two-point crossover method [129]. Finally, we mutate
the children in a way similar to finding neighbors in Algo. 1.

5.7 Validating the Conjectures Empirically

In this section, we evaluate our search heuristics for varying U operators (i.e., varying
values of 6) and for n = 2 to 5 and observe that they likely deliver near-optimal
initial state solutions to the IS0 problem. Based on this observation, we show that
our optimal solution Conjecture 1 is very likely true as well the Conjecture 2. Our
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Empirical Validation of Search Heuristics

Hill Climbing Simulated Annealing'\
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Figure 5.2: Performance of the three search heuristics for varying U’s parameter 6,

for different number of sensors in the network. Genetic Algorithm (GA) is not shown

explicitly, for clarity, but it also performs almost exactly the same as Hill-Climbing
and Simulated Annealing (SA) which are plotted above.

search heuristics implementation and experiment’s raw data are open-source at®.

Evaluation Setting. Recall that, without loss of generality, we assume the eigenval-
ues of U to be {e*? e~} with U |us) = ¥ |uy) where uy are the two eigenstates
of U. In our evaluations, we vary the # in the range of (0,180) degrees, and assume
the prior probabilities of final states to be uniform. We consider four values of n, the
number of sensors, viz., 2, 3, 4, and 5. Running simulations for much larger values
of n is infeasible due to the prohibitive computational resources needed. E.g., the
estimated computation time to run any of the search heuristics for n = 10 will take
10s of years, based on our preliminary estimates.”

Performance of Search Heuristics. Fig. 5.2 shows the performance of the search
heuristics under varying # and four values of n = 2, 3,4, 5, in terms of the IS0 objective
function P(|y),U) for the initial state solution [¢). We make the following two
observations:

1. All three heuristics perform almost exactly the same.

2. The heuristics deliver an initial state solution with P(|¢)),U) = 0 for the same
range of # given in Theorem 2.

8https://github.com/caitaozhan /QuantumSensorNetwork

9In our context, the Hill-Climbing heuristic goes through about 100 iterations and in each itera-
tion, it needs to solve 4 -2™ instances of SDP formulations (Eqns 5.17-5.19) where n is the number of
sensors. We use the Convex-Python CVXPY [69] package (which in turn used the Splitting Conic
Solver [198]) to solve our SDP formulations, and observe that it takes more than an hour to solve
a single SDP instance for n = 10; this suggests an estimate of 10s of years of computation time for
n = 10.
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Figure 5.3: The objective value P(), probability of error, of the candidate solution

over iterations of the three search heuristics for a special value of § = 46 degrees and
n = 4 sensors.

We also observe that the heuristics perform the same for # and 7 — 0, i.e., symmetric
along the § = 7/2 line. Thus, in the remaining plots, we only plot results for 6 €
(0,7/2]. Fig. 5.3 shows the convergence rates of the three heuristics for a specific
value of 6 = 46 degrees and n = 4 sensors. We observe that HC converges the fastest,
followed by SA and GA. After 100 iterations, the HC and SA end at a probability of
error of 5.85%, while GA ends at 5.86%.

Empirical Validation of Conjecture 2. Recall that Conjecture 2 states that
an “average” solution of two ISO solutions with equal objective values have a lower
objective value. To empirically validate Conjecture 2, we generate a random state
|1}, and then, generate n! — 1 additional states of the same objective value P() by
renumbering the sensors as discussed in Theorem 3’s proof. Then, we take many
pairs of these states, average them, and compute the objective value. Fig. 5.4 plots
the objective value of the original state |¢), and the range of the objective values of
the averaged states. We observe that the objective values of the averaged states are
invariably less than that of |¢).

Empirical Validation of the Optimal Solution Conjecture 1. We now evaluate
the performance of the initial state solution obtained by Conjecture 1 and compare it
with the solution delivered by one of the search heuristics—Hill Climbing (HC). Here,
we consider 0 € (0,7)U (180 — T, 180) degree, where T is as defined in Theorem 2. In
Fig. 5.5, we observe that the HC heuristic and Conjecture 1 solutions have identical
performance, suggesting that Conjecture 1’s solution is likely optimal based on our
earlier observation that the search heuristics likely deliver optimal solutions.

Symmetry “Index” vs. Objective Value (Probability of Error). In this final
experiment, we investigate the impact of the symmetry of coefficients on the objective
value of an initial state. Here, we only do experiments for n = 3 number of sensors.
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Conjecture 2: The Averaged Initial States Have Lower PoE
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Figure 5.4: Empirical validation of Conjecture 2. For four different values of 6 and
three different values of n, we show that the objective value (Probability of Error)
of the original initial state (the red circle) remains higher than the objective value of
the many “averaged” states (range shown by blue the bar).

To this end, we define a notion of symmetry index which quantifies the symmetry of
coefficients in a given initial state. In particular, we define the symmetry index for an

initial state |¢) = > 1; |j) as:
J

Yo D (P =Py (5.23)

k=0 [1;]2,]9;|2€Sk,

where Sj is the kth symmetric set as defined in Theorem 2. The symmetric index
being zero implies that within each symmetric set, all the coefficient-squares are equal.
Fig. 5.6 shows that the search heuristic essentially generates solutions with lower
and lower symmetry index, and finally, converges to a solution with zero symmetry
index value. This is true for all three search heuristics (Figs. 5.6a) and for varying
0 (Fig. 5.6b). Given Fig. 5.3 already shows that the objective value decreases as the
searching iterations go on, we can conclude that the objective value and the symmetry
index decrease simultaneously when the iterations go on. Furthermore in Fig. 5.7a, we
show the correlation between symmetry index and objective value through a scatter
plot—with the objective value generally decreasing with the decrease in symmetry
index. Fig. 5.7b zooms into the later iterations of the heuristics wherein the symmetry
index is very low (less than 0.08) to show a clearer view of the correlation.

5.8 Extensions

In this section, we consider the generalization to the unambiguous discrimination
scheme, non-uniform prior probabilities, and quantum noise.
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Empirical Validation of Conjecture 1

Hill Climbing Conjecture 1
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Figure 5.5: The Conjecture 1’s solution performs almost exactly as the Hill-Climbing

heuristic when 0 € (0,7] U [180 — T, 180), degrees, where T is from Theorem 2. For

n = 2, Conjecture 1’s solution matches with the provably optimal solution from [110)]
with T" being 45 degrees.

5.8.1 Unambiguous Discrimination Measurement

Till now, we have only considered the minimum error measurement scheme wherein
the measurement operator always outputs a state, though sometimes incorrectly and
thus incurring a certain probability of error. We now consider an alternative mea-
surement scheme of unambiguous measurement [16] where there are no errors, but
the measurement can fail, i.e. giving an inconclusive outcome. The unambiguous
measurement scheme thus may incur a probability of failure. Fortunately, our results
for the minimum error measurement scheme also hold for the unambiguous discrimi-
nation measurement scheme and objective, as observed below.

1. The sufficient and necessary condition for orthogonality derived in Theorem 2
is a property of the states and the operator U, and is independent of the mea-
surement scheme. Thus, Theorem 2 hold for an unambiguous discrimination
scheme.

2. The intuition behind Conjecture 1 is based on the homogeneity of sensors and
symmetry of the problem setting (e.g., symmetric eigenvalues of U, uniform
probability of final states, etc.). Thus, we believe the optimal initial state
solution for an unambiguous discrimination scheme is the same as in the case
of the minimum error scheme. Thus, Conjecture 1 should hold.

3. Conjecture 2 is independent of the measurement scheme.

4. We prove the version of Lemma 3 corresponding to the unambiguous measure-
ment below. Thus, Theorem 3 also holds for unambiguous measurement.
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Figure 5.6: Symmetry-index of the candidate solutions over iterations.

5. The optimization problem of determining the optimal measurement {II;} for
an unambiguous discrimination scheme can also be formulated as an SDP [13],
and thus can be computed numerically. Thus, the search heuristics from §5.6
will also work for unambiguous measurement with the corresponding SDP for
an unambiguous discrimination scheme.

Lemma 4. Consider n states to be discriminated ¢o, ¢1, . .., pn—1 such that (¢;|¢;) =
x, for all 0 < 4,7 < n—1 and 1 # j. The probability of failure in discriminat-
ing o, P1, - - -, 1 using an optimal measurement (for unambiguous discrimination)
creases with an increase in x when x > 0.

PROOF: The optimal /minimum probability of failure using the optimal POVM
for a set of states with equal pairwise inner products is equal to z when z > 0 [84].
Thus, the lemma trivially holds. ]

5.8.2 Non-uniform Prior Probability

Till now, we have implicitly assumed that the events (of affecting one sensor) occur
with a uniform probability. Here, we consider the generalization of allowing for the
events to occur with non-uniform probability. This could happen if different sensor
locations can have different probabilities of the event occurrence.

Number of Sensors n = 2. When the number of sensors is 2, we observe that
the optimal solution for the IS0 problem actually remains unchanged. In particular,
the expression for the minimum probability of error in discriminating the two final
states, with non-uniform probabilities p; and py, for a given initial state [¢) is given
by (derived from [109]):

Po= 3 (1= VI~ @0 & U 0P). (5.24)
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Figure 5.7: The correlation between the objective value (probability of error) and the
symmetry index.

The above entails that, as for the case of uniform probabilities, we need to minimize
(|(U @ U~1)|¢)|, which is independent of p; and p,. Thus, the optimal initial state
for n = 2 is independent of the probabilities associated with the final states/events.

Number of Sensors n > 2. For n > 2, it is easy to see that Theorems 1 and 2
that derive conditions for orthogonality of the final states remain unchanged since the
probabilities of events/final-states do not affect the final states themselves. However,
the optimal IS0 solution for general values of 8 is certainly different than that con-
jectured in Conjecture 1, since Conjecture 1 is fundamentally based on the symmetry
of the final states, which is unlikely to be the case for non-uniform probabilities of
events. On the other hand, it is easy to generalize the search heuristics for the case of
non-uniform probability. See Fig. 5.8, which plots the objective value P() for varying
6 for the three search heuristics. We observe that (i) The heuristics return an opti-
mal objective value (of zero) for the conditions in Theorems 2; (ii) All the heuristics
perform almost the same. These observations suggest that the heuristics likely per-
form near-optimally even for the general case of non-uniform event probabilities. In
addition, we note that, compared to the uniform probability case (i.e., Fig. 5.2), the
optimal objective value P() under non-uniform probabilities is lower than the P()
under uniform probabilities, for any particular 6.

5.8.3 Impact of Quantum Noise.

Till now, we have looked at the ISO problem from a theoretical perspective while
ignoring the quantum noise. Since quantum noise is an essential aspect of quantum
systems, we present a mitigation strategy to correct for quantum noise and evaluate
it for two quantum noise models.

Quantum Noise-Mitigation Strategy. In our context, the impact of the noise
is that it essentially results in final states that are different (due to noise) than the
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Non-uniform Prior: Empirical Validation of Search Heuristics
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Figure 5.8: Performance of the three search heuristics with non-uniform prior for
varying U’s parameter 6, for a different number of sensors in the network. Genetic
Algorithm (GA) is not shown explicitly, for clarity, but it also performs almost the
same as Hill-Climbing and Simulated Annealing (SA), which are plotted above.

ones we try to discriminate. That is, consider an given initial state |1)) which yields
(noiseless) final states {|¢;)}; let the optimal measurement to discriminate the final
states {|¢;)} be the POVM with elements { F;}. However, due to the noise, the actual
noisy final states may actually be different than {|¢;)}, which, when discriminated
with the POVM {E;}, will result in a higher probability of error than if there were
no noise. Thus, to account for such quantum noise, we propose to modify the POVM
measurement, appropriately. In particular, we compute the POVM measurement to
discriminate the expected noisy final states—which we represent by the density ma-
trices of the mixed states representing the ensemble of potential final states. More
formally, our strategy is as follows: For each final state |¢;), let p; be the density
matrix that represents the distribution/mixture of noisy final states that may result
instead of |¢;). Then, we use SDP (Eqn. 5.17) to determine the optimal POVM { E!}
that optimally discriminates the density matrices {p;}, and use it to discriminate the
noisy final state.

Evaluation. We consider three popular noise models [197] for evaluation of our
above mitigation technique.

1. Amplitude damping causes the quantum system to lose energy.
2. Phase damping describes the loss of quantum information without energy loss.

3. Depolarizing channel is probabilistically replacing the qubit by the completely
mixed state, /2.

All the above noise models can be characterized using the Kraus operators (K), which
obey >, KZ-T K; = 1. In particular, the Kraus operators for the amplitude damping
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Figure 5.9: The improvement in the objective value P() for the Conjecture 1’s solution
due to the noise-mitigation strategy, for the three noise models, for § = 45 degrees
and four sensors.
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where p can be thought of as the probability of losing a photon [197]. The Kraus
operators for the phase damping are:

N = o) =y =] [0 5

where p can be interpreted as the probability that a photon from the system has
been scattered (without loss of energy) [197]. Finally, the Kraus operators for the
depolarizing channel are:

N | T R O R !

where p is the probability of a qubit being depolarized. For a given noise model, its
Kraus operators give the operators by which the state’s density matrix is transformed
with a corresponding probability. For example, in our context, under the third noise
model of depolarizing noise, for a given initial state |¢)), each final state |¢;) with a
density matrix p; = |¢;)}¢;| is transformed to KdopiKlo with a probability of (1 — p)
and to KdlpiK;;l or KdgpiK;2 or KdgpiK:lg with a probability of p/3 each. The above
noise models are for a single sensor /qubit; for multiple qubits, we use a tensor product
of the single-qubit noises. Fig. 5.9 shows the 1) impact of various quantum noise on
the results, and 2) for the initial state (from Conjecture 1), how the objective value
P() improves due to the above-discussed noise-mitigation strategy for the three noise
models, for the specific value of § = 45 degrees and the number of sensors equal to 4.
We observe that the improvement is particularly significant in the case of amplitude-
damping noise.
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5.9 Conclusion and Future Directions

In this work, we formulate the problem of initial state optimization in detector quan-
tum sensor networks, which has potential applications in event localization. We first
derive the necessary and sufficient conditions for the existence of an initial state that
can detect the firing sensor with perfect accuracy, i.e., with zero probability of error.
Using the insights from this result, we derive a conjectured optimal solution for the
problem and provide a pathway to proving the conjecture. Multiple search-based
heuristics are also developed for the problem and the heuristics’ numerical results
successfully validate the conjecture. In the end, we extend our results to the un-
ambiguous discrimination measurement scheme, non-uniform prior, and considering
quantum noise.

Beyond proving the stated Conjectures in the paper, there are many generaliza-
tions of the addressed IS0 problem of great interest in terms of: (i) More general final
states (e.g, two sensors may change at a time, allowing for multiple impact operators
Uy, Us, etc.), (ii) Restricting the measurement operators allowed (e.g., allowing only
the projective measurements and/or local measurements [37|), to incorporate prac-
tical considerations in the implementation of measurement operators. We are also
interested in proving related results of interest, e.g., IS0 initial-state solution being
the same for minimum error and unambiguous discrimination.
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Chapter 6

Efficient Quantum Network
Communication using Balanced
Entanglement Swapping Trees

Quantum network communication is challenging, as the No-cloning theorem in the
quantum regime makes many classical techniques inapplicable; in particular, direct
transmission of qubit states over long distances is infeasible due to unrecoverable er-
rors. For long-distance communication of unknown quantum states, the only viable
communication approach (assuming local operations and classical communications)
is teleportation of quantum states, which requires a prior distribution of entangled
pairs (EPs) of qubits. Establishment of EPs across remote nodes can incur significant
latency due to the low probability of success of the underlying physical processes. The
focus of this chapter is to develop efficient techniques that minimize EP generation
latency. Prior works have focused on selecting entanglement paths; in contrast, we
select entanglement swapping trees—a more accurate representation of the entangle-
ment generation structure. [95] has developed a dynamic programming algorithm to
select an optimal swapping-tree for a single pair of nodes, under the given capacity and
fidelity constraints. For the general setting, [95]| also developed an efficient iterative
algorithm to compute a set of swapping trees. However, the dynamic programming
algorithm has a high time complexity, and thus, may not be practical for real-time
route finding in large networks. In this chapter, we focus on developing an almost
linear time heuristic for the QNR-SP problem, based on the classic Dijkstra shorted
path algorithm. The designed heuristic performs close to the DP-based algorithms in
our empirical studies.

6.1 Introduction

Fundamental advances in physical sciences and engineering have led to the realization
of working quantum computers (QCs) [9, 88]. Although there is some progress in the
hardware to ensure the stability and scalability of quantum computing systems |50,
51], there are still significant limitations to the capacity of individual QC [36]. Quan-
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tum networks (QNs) enable the construction of large, robust, and more capable quan-
tum computing platforms by connecting smaller QCs. Quantum networks [234] also
enable various important applications [49, 82, 137, 182, 227]. However, quantum net-
work communication is challenging — e.g., physical transmission of quantum states
across nodes can incur irreparable communication errors, as the No-cloning Theo-
rem |70] proscribes making independent copies of arbitrary qubits. At the same time,
certain aspects unique to the quantum regime, such as entangled states, enables novel
mechanisms for communication. In particular, teleportation [19] transfers quantum
states with just classical communication, but requires an a priori establishment of en-
tangled pairs (EPs). This chapter presents techniques for the efficient establishment
of EPs in a network.

The establishment of EPs over long distances is challenging. Coordinated entan-
glement swapping (e.g. DLCZ protocol |76]) using quantum repeaters can be used to
establish long-distance entanglements from short-distance entanglements. However,
due to the low probability of success of the underlying physical processes (short-
distance entanglements and swappings), EP generation can incur significant latency—
of the order of 10s to 100s of seconds between nodes 100s of kms away [225]. Thus,
we need to develop techniques that can facilitate the fast generation of long-distance
EPs. [95] solves the QNR-SP Problem: Given a single (s, d) pair, select a minimum-
latency swapping tree under given constraints. In this chapter, we select near-optimal
swapping trees by a heuristic at a much lower time complexity.

To the best of our knowledge, no prior work has addressed the problem of selecting
an efficient swapping-tree for entanglement routing; they all consider selecting routing
paths (|35] selects a path using a metric based on balanced trees; see §6.3.2). Almost
all prior works have considered the “waitless” model, wherein all underlying physical
processes much succeed near-simultaneously for an EP to be generated; this model
incurs minimal decoherence, but yields very low EP generation rates. In contrast, we
consider the “waiting” protocol, wherein, at each swap operation, the earlier arriving
EP waits for a limited time for the other EP to be generated. Such an approach with
efficient swapping trees yields high entanglement rates; the potential decoherence risk
can be handled by discarding qubits that "age" beyond a certain threshold.

Our Contributions. We formulate the entanglement routing problem (§6.3) in QNs
in terms of selecting optimal swapping trees in the “waiting” protocol, under fidelity
constraints. In this context, we make the following contribution:

1. For the QNR-SP problem, the optimal algorithm in [95] has high time complexity;
we aim to improve the time complexity of the algorithm without degrading its
empirical performance. We thus design a near-linear time heuristic for the
QNR-SP problem based on an appropriate metric that essentially restricts the
solutions to balanced swapping trees (§6.4).
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6.2 QC Background

Qubit States. Quantum computation manipulates qubits analogous to how classical
computation manipulates bits. At any given time, a bit may be in one of two states,
traditionally represented by 0 and 1. A quantum state represented by a qubit is a
superposition of classical states, and is usually written as aq |0) + a4 |1), where « and
oy are amplitudes represented by complex numbers and such that ||aol|” + || a1 || = 1.
Here, |0) and |1) are the standard (orthonormal) basis states; concretely, they may
represent physical properties such as spin (down/up), polarization, charge direction,
etc. When a qubit such as above is measured, it collapses to a |0) state with a
probability of ||ag||* and to a |1) state with a probability of ||ay|”. In general, a
state of an n qubit system can be represented as Y7 '« i) where “5” in |i) is i’s bit
representation. Qubit mapping refers to the problem of assigning logical qubits used
in quantum algorithms to the physical qubits available on a quantum computer. [127]
exploits the regular structure of modern quantum architecture and [126] leverages
technical intuition (i.e., educated guess) to advance qubit mapping in domain specific
problems.

Entanglement. Entangled pure! states are multi-qubit states that cannot be "fac-
torized" into independent single-qubit states. E.g., the 2-qubit state \/Li |00) + \/Lﬁ |11);
this particular system is a mazimally-entangled state. We refer to maximally-entangled
pairs of qubits as EPs. The surprising aspect of entangled states is that the combined
system continues to stay entangled, even when the individual qubits are physically
separated by large distances. This facilitates many applications, e.g., teleportation
of qubit states by local operations and classical information exchange, as described
next.

Teleportation. Direct transmission of quantum data is subject to unrecoverable
errors, as classical procedures such as amplified signals or re-transmission cannot be
applied due to quantum no-cloning [70, 272].> An alternative mechanism for quantum
communication is teleportation, Fig. 6.1 (a), where a qubit ¢ from a node A is recre-
ated in another node B (while “destroying” the original qubit q) using only classical
communication. However, this process requires that an EP already established over
the nodes A and B. Teleportation can thus be used to reliably transfer quantum
information. At a high level, the process of teleporting an arbitrary qubit, say qubit
¢, from node A to node B can be summarized as follows:

1. an EP pair (eq, e2) is generated over A and B, with e; stored at A and e, stored
at B;

2. at A, a Bell-state measurement (BSM) operation over e; and ¢ is performed,
and the 2 classical bits measurement output (cjcz) is sent to B through the

'In this chapter, we largely deal with only pure qubit states. Entanglement of general mixed
states is defined in terms of separation of density matrices [102].

2Quantum error correction mechanisms [68, 190] can be used to mitigate the transmission errors,
but their implementation is very challenging and is not expected to be used until later generations
of quantum networks.
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Figure 6.1: (a) Teleportation of |¢) from A to B, while consuming an entangled pair
(e1,e2). (b) Entanglement swapping over the triplet of nodes (A, B, C'), which results
in A’s qubit entangled with C’s qubit. This can be viewed as a teleportation of e,
from node B to C.

classical communication channel; at this point, the qubits ¢ and e; at A are
destroyed.

3. manipulating the EP-pair qubit es at B based on received (¢, ¢z) changes its
state to ¢’s initial state.

Depending on the physical realization of qubits and the BSM operation, it may not
always be possible to successfully generate the 2 classical bits, as the BSM operation
is stochastic.

Entanglement Swapping (ES). Entanglement swapping is an application of tele-
portation to generate EPs over remote nodes. See Fig. 6.1 (b). If A and B share
an EP and B teleports its qubit to C, then A and C' end up sharing an EP. More
elaborately, let us assume that A and B share an EP, and B and C share a separate
EP. Now, B performs a BSM on its two qubits and communicates the result to C
(teleporting its qubit that is entangled with A to C'). When C finishes the protocol,
it has a qubit that is entangled with A’s qubit. Thus, an entanglement swapping
(ES) operation can be looked up as being performed over a triplet of nodes (A, B, C')
with EP available at the two pairs of adjacent nodes (A, B) and (B, C); it results in
an EP over the pair of nodes (A, C).

Fidelity: Decoherence and Operations-Driven. Fidelity is a measure of how
close a realized state is to the ideal. Fidelity of qubit decreases with time, due to
interaction with the environment, as well as gate operations (e.g., in ES). Time-
driven fidelity degradation is called decoherence. To bound decoherence, we limit the
aggregate time a qubit spends in a quantum memory before being consumed. With
regards to operation-driven fidelity degradation, Briegel et al. [32] give an expression
that relates the fidelity of an EP generated by ES to the fidelities of the operands, in
terms of the noise introduced by swap operations and the number of link EPs used.
The order of the swap operations (i.e., the structure of the swapping tree) does not
affect the fidelity. Thus, the operation-driven fidelity degradation of the final EP
generated by a swapping-tree T' can be controlled by limiting the number of leaves of
T, assuming that the link EPs have uniform fidelity (as in [40]).
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Entanglement Purification [32, e.g.] and Quantum Error Correction [218, e.g.|
have been widely used to combat fidelity degradation. Our work focuses on optimally
scheduling ES operations with constraints on fidelity degradation, without purifica-
tion or error correction.

Quantum Memories. Multiple quantum memories have been recently proposed to
bring quantum networks into realization. Types of quantum memories that support
BSM measurements and gate unitary operations, and probably have a long decoher-
ence time can be used in quantum communications. Most of them are matter-based
which have photonic interface to produce matter-matter entanglement over two neigh-
boring nodes (see below). At a high-level, there are three different quantum memory
platforms: quantum dots, trapped atoms or ions, and colour centers in diamond. Each
has its own physical characteristics and applications. While quantum dots have the
ability to process quantum information very fast, they exhibit a very low decoherence
time among others [207, 254]. To overcome the low efficiency of single atom-photon
coupling process, atomic ensemble schemes have been proposed |76] where along with
dynamic decoupling and cooling techniques, decoherence times of a few seconds have
been achieved [67, 223, 249|. For trapped ion memories, decoherence times from sev-
eral minutes to few hours have been demonstrated [141, 261]. To further increase
the entanglement generation rate, [22] proposes a way to use a single silicon—vacancy
(SiV) colour center in diamond to perform asynchronous photonic BSM at the node
located in the middle of two adjacent quantum nodes.

6.2.1 Generating Entanglement Pairs (EPs)

As described above, teleportation, which is the only viable means of transferring
quantum states over long distances, requires an a priori distribution of EPs. Thus,
we need efficient mechanisms to establish EPs across remote QN nodes; this is the
goal of our work. Below, we start with describing how EPs are generated between
adjacent (i.e., one-hop away) nodes, and then discuss how EPs across a pair of remote
nodes can be established via ESs.

Generating EP over Adjacent Nodes. The physical realization of qubits de-
termines the technique used for sharing EPs between adjacent nodes. The heralded
entanglement process 35, 230] to generate an atom-atom EP between adjacent nodes
A and B is as follows:

1. Generate an entangled pair of atom and a telecom-wavelength photon at node
A and B. Qubits at each node are generally realized in an atomic form for
longer-term storage, while photonic qubits are used for transmission.

2. Once an atom-photon entanglement is locally generated at each node (at the
same time), the telecom-photons are then transmitted over an optical fiber to
a photon-photon/optical BSM device C' located in the middle of A and B so
that the photons arrive at C' at the same time.

3. The device C' performs a BSM over the photons, and transmits the classical
result to A or B to complete ES.
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Other entanglement generation processes have been proposed [190]; our techniques
themselves are independent of how the link EP are generated.

Generating EP between Remote Nodes. Now, EP between non-adjacent nodes
connected by a path in the network can be established by performing a sequence of
ESs at intermediate nodes; this requires an a priori EP over each of the adjacent pairs
of nodes in the path. For example, consider a path of nodes xq, x1, 2, 3, T4, T5, With
an EP between every pair of adjacent nodes (x;, z;41). Thus, each node x; (1 < i < 4)
has two qubits, one of which is entangled with x;_; and the other with x;,;. Nodes
xo and x5 have only one qubit each. To establish an EP between zy and x5, we can
perform a sequence of entanglement swappings (ESs) as shown in Fig. 6.2. Similarly,
the sequence of ES over the following triplets would also work: (zs, x5, x4), (22, 24, x5),

(:UO, €, x2)7 (:EOa T, SC5).
Root EPs

(X0, X5)

(%0, x3) (%3, %5)

(x0, x2) o l =
(x2,x3) (x3,%4) (X4,X5)
Swapping § Link EPs ™ Leaf nodes
Tree (x0,%1) (x1,%2)
Path » » » » - ®
xO x1 xZ X3 .X'4 .'X,'5

Figure 6.2: A swapping tree over a path. The leaves of the tree are the path-links,
which generate link-EPs continuously.

Swapping Trees. In general, given a path P = s ~» d from s to d, any complete
binary tree (called a swapping tree) over the ordered links in P gives a way to generate
an EP over (s,d). Each vertex in the tree corresponds to a pair of network nodes in
P, with each leaf representing a link in P. Every pair of siblings (A, B) and (B, C)
perform an ES over (A, B, C) to yield an EP over (A, C')—their parent. See Fig. 6.2.
Note that subtrees of a swapping tree execute in parallel. Different swapping trees
over the same path P can have different performance characteristics, as discussed
later (see Fig. 6.4).

Expected Generation Latency/Rate of EPs. In general, our goal is to continuously
generate EPs at some rate using a swapping tree, using continuously generated EPs
at the leaves. The stochastic nature of ES operations means that an EP at the
tree’s root will be successfully generated only after many failed attempts and hence
significant latency. We refer to this latency as the generation latency of the EP at
the root, and in short, just the generation latency of the tree. EP generation rate is
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the inverse of its generation latency. Whenever we refer to generation latency /rate,
we implicitly mean expected generation latency/rate.

Two Generation Protocols: WaitLess and Waiting When a swapping tree is
used to (continuously) generate EPs, there are two fundamentally different generation
protocols [225, 246].

e WaitLess Protocol. In this model, all the underlying processes, including link
EP generations and atomic BSMs are synchronized. If all of them succeed then
the end-to-end EP is generated. If any of the underlying processes fail, then all
the generated EPs are discarded and the whole process starts again from scratch
(from generation of EP at links). In the WaitLess protocol, all swapping trees
over a given path P incur the same generation latency—thus, here, the goal is
to select an optimal path P (as in [40, 230]).

e Waiting Protocol. In Waiting protocol, a qubit of an EP may wait (in a quan-
tum memory) for its counterpart to become available so that an ES operation
can be performed. Using such storage, we preclude discarding successfully gen-
erated EPs, and thus, reduce the overall latency in generation of a root-level
EP. E.g., let (A, B) and (B, C) be two siblings in a swapping tree and EP for
(A, B) is generated first. Then, EP (A, B) may wait for the EP (B,C) to be
successfully generated. Once the EP (B, C) is generated, the ES operation is
done over the triplet (A, B,C') to generate the EP (A, C). If the EP (A, B)
waits beyond a certain threshold, then it may decohere.

Hardware Requirement Differences. WaitLess protocols can generate EPs without
quantum memories in a relay fashion if the EP generation among adjacent nodes can
be tightly synchronized. In contrast, Waiting protocols benefit from memories with
good coherence times (§6.5).

Why Waiting’s Entanglement Generation Rate is Never Worse. The focus
of the WaitLess protocol is to avoid qubit decoherence due to storage. But it re-
sults in very low generation rates due to a very-low probability of all the underlying
processes succeeding at the same time. However, since qubit coherence times are typ-
ically higher than the link-generation latencies®, an appropriately designed Waiting
protocol will always yield better generation rates without significantly compromising
the fidelity The key is to bound the waiting time to limit decoherence as desired;
e.g., in our protocol, we restrict to trees with high expected fidelities (§6.3), and
discard qubits that "age" beyond a threshold. Both protocols use the same number
of quantum memories (2 per node), though the Waiting protocols will benefit from
low-decoherence memories; other hardware requirements also remain the same.

3Link generation latencies for 5 to 100km links range from about 3 to 350 milliseconds for typical
network parameters [35], while coherence times of few seconds is very realistic (coherence times of
several seconds [86, 165] have been shown long ago, and more recently, even coherence times of
several minutes [222, 236] to a few hours [262, 320] have been demonstrated.
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Figure 6.3: Key notations used.

6.3 Model, Problem, and Related Works

In this section, we discuss our network model, formulate the problem addressed, and
discuss related work.

Network Model. We denote a quantum network (QN) with a graph G = (V| E),
with V' = {vy,v9,...,v,} and £ = {(v;,v;)} denoting the set of nodes and links
respectively. Pairs of nodes connected by a link are defined as adjacent nodes. We
follow the network model in [35] closely. Thus, each node has an atom-photon EP
generator with generation latency (t,) and probability of success (p,). Generation
latency is the time between successive attempts by the node to excite the atom to
generate an atom-photon EP; this implicitly includes the times for photon transmis-
sion, optical-BSM latency, and classical acknowledgment. For clarity of presentation
and without loss of generality, we assume homogeneous network nodes with the same
parameter values. The generation rate is the inverse of generation latency, as before.
A node’s atom-photon generation capacity/rate is its aggregate capacity and may be
split across its incident links (i.e., in the generation of EPs over its incident links/n-
odes). Each node is also equipped with a certain number of atomic memories to store
the qubits of the atom-atom EPs.

A network link is a quantum channel (e.g., using an optical fiber or a free-space
link), and, in our context, is used only for the establishment of link EP. In particular,
a link e = (A, B) is used to transmit telecom-photons from A and B to the photon-
photon BSM device in the middle of e. Thus, each link is composed of two half-
links with a probability of transmission success (p.) that decreases exponentially with
the link distance (see §6.5). The optical-BSM operation has a certain probability
of success (pyp). To facilitate atom-atom ES operations, each network node is also
equipped with an atomic-BSM device with an operation latency (¢,) and probability
of success (py). Finally, there is an independent classical network with a transmission
latency (.); we assume classical transmission always succeeds.

Single vs. Multiple Links Between Nodes. For our techniques multiple links between
a pair of adjacent nodes can be replaced by a single link of aggregated rate/capacity.
Hence we assume only a single link between every pair of nodes. However, distinct
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multiple links between nodes have been used creatively in [230] (which refers to them
as multiple channels); thus, we will discuss multiple links further in §6.5 when we
evaluate various techniques. We note that the all-photonic protocol in [12] is essen-
tially a more sophisticated version of the multi-link WaitLess protocol in [230] to
further minimize memory requirements, but it uses multipartite cluster states which
are challenging to create. In either case, in terms of the selection of paths/trees, the
path-selection techniques from [230] should also apply to the all-photonic protocol
with certain modifications to account for how the cluster states are generated.

EP Generation Latency of a Swapping Tree. Given a swapping tree and EP
generation rates at the leaves (network links), we wish to estimate the generation
latency of the EPs over the remote pair corresponding to the tree’s root with the
Waiting protocol. Below, we develop a recursive equation. Consider a node (A, C)
in the tree, with (A, B) and (B, () as its two children. Let Tap,Tgc, and Tac be
the corresponding (expected) generation latencies of the EPs over the three pairs
of nodes. Below, we derive an expression for T4 in terms of Typ and Tge; this
expression will be sufficient to determine the expected latency of the overall swapping
tree by applying the expression iteratively. We start with an observation. If two EP
arrival processes X; and X, are exponentially distributed with a mean inter-arrival
latency of A each, then the expected inter-arrival latency of max(X,Y’) is (3/2)A.
From above, if assume T4 and Tgc to be exponentially distributed with the same
expected generation latency of T', then the expected latency of both EPs arriving is
(3/2)T. Thus, we have:

3
TAC = (§T + tb + tc)/pb, (61)

Remarks. We make the following remarks regarding the above expression. First, when

Tap # Tsc, we are able to only derive an upper-bound on T4 which is given by the
above equation but with T replaced by max(Tap, Tgc).* Second, our motivation for
the exponential distribution assumption stems from the fact that the EP generation
latency at the link level is certainly exponentially distributed if we assume the un-
derlying probabilistic events to have a Poisson distribution. Third, note that the
resulting distribution is not exponential. Despite this, we apply the above equation
recursively to compute the tree’s generation latency. Finally, Eqn. 6.1 is conservative
in the sense that each round of an EP generation of any subtree’s root starts from
scratch (i.e., with no link EPs from prior round) and ends with either a EP genera-
tion at the whole swapping tree’s root or an atomic-BSM failure at the subtree’s root.
We do not “pipeline” any operations across rounds within a subtree, which may lower
latency; this is beyond this work’s scope.

6.3.1 Problem Formulation

We now formulate the central problem of selecting a single swapping trees for a single
source-destination pair.

4The 3-over-2 formula as an upper bound has also been corroborated in a recent work [59] which
derives analytical bounds on EP latency times in more general contexts.
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QNR Single Path (QNR-SP) Problem. Given a quantum network and a source-
destination pair (s, d), the QNR-SP problem is to determine a single swapping tree
that maximizes the expected generation rate (i.e., minimizes the expected generation
latency) of EPs over (s,d), under the following capacity and fidelity constraints:

1. Node Constraints. For each node, the aggregate resources used by |, T; is less
than the available resources; we formulate this formally below.

2. Fidelity Constraints. Each swapping tree in | J, T; satisfies the following: (a)
Number of leaves is less than a given threshold 7;; this is to limit fidelity degra-
dation due to gate operations. (b) Total memory storage time of any qubit is
less® than a given decoherence threshold 4.

Informally, the swapping-trees may also satisfy some fairness constraint across the
given source-destination pairs. A special case of the above QNR problem is to select a
single tree for a source-destination pair; we address this in the next section.
Formulating Node Constraints. Consider a swapping tree T € |J, T; over a path P.
For each link e € P, let R(e, T) be the EP rate being used by Tover the link e in P.
Let us define R, = ) 1 R(e, T), and let E(i) be the set of edges incident on i. Then,
the node capacity constraint is formulated as follows.

1ty > Y Re/(pp’pm) VieV. (6.2)

ecE(i)

The above comes from the fact that to generate a single link EP over e, each end-node
of e needs to generate 1/(p,*p.*poy) photons successfully, since each photon (from each
end-node) has a generation success of p, and a transmission success rate of p., and the
optical-BSM’s success probability over the two successfully arriving photons is pgp.
Note that 1/t, is a node’s total generation capacity. Also, the memory constraint is
that for any node 7, the memory available in 7 should be more than 2x + y where z is
the number of swapping trees that use ¢ as an intermediate node and y is the number
of trees that use 7 as an end node.

For homogeneous nodes and link parameters, it is easy to see that the best swap-
ping tree is the balanced or almost-balanced tree over the shortest path. As de-
scribed in §6.3.2, the QNR-SP problem has been addressed before in [35, 230] under
different models. The problem of selecting multiple swapping trees for multiple source-
destination pairs is solved in [95].

5We note that, in our context, the storage time as well as the memory coherence time are
statistical quantities due to the underlying statistical mechanisms. However, for the purposes of
selecting a swapping tree, we use a fixed decoherence threshold 7; value equal to the mean of the
distribution of the coherence time (recent work [144] computes optimal cut-offs/thresholds, and their
techniques can be used to pick 7;). When simulating a selected tree for generation of EPs, we can
implement coherence time as a statistical measure.
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6.3.2 Related Works

There have been a few works in recent years that have addressed generating long-
distance EPs efficiently. All of these works have focused on selecting an efficient
routing path [89, 230, 303| for the swapping process (Callefi [35] also selects a path,
but using a metric based on balanced trees). In addition, all except [35] have looked
at the WaitLess protocol of generating the EPs. Recall that in the WaitLess model,
the selection of paths suffices, while in the Waiting model, one needs to consider the
selection of efficient swapping trees with high fidelity. Selection of optimal swapping
trees is a fundamentally more challenging problem than selection of paths—and has
not been addressed before, to the best of our knowledge. We start with discussing
how the WaitLess model works.

WaitLess Approaches. The most recent works to address the above problem
are [230] and [40], both of which consider the WaitLess model. In particular, Shi and
Qian [230] design a Dijkstra-like algorithm to construct an optimal path between a
pair of nodes, when there are multiple links (channels) between adjacent nodes. Then,
they use the algorithm iteratively to select multiple paths over multiple pairs of nodes.
[89] is an improvement of [230] that proposes a synchronous multi-time-slot entan-
glement routing framework based on the idea of reusing the established but unused
EP pairs in subsequent time slots. Chakraborty et al. [40] design a multi-commodity-
flow like LP formulation to select routing paths for a set of source-destination pairs.
They map the operation-based fidelity constraint to the path length (as in [32]) and
use node copies to model the constraint in the LP. However, they explicitly assume
that the link EP generation is deterministic—i.e., always succeeds. Among earlier
relevant works, [200] proposes a greedy solution for grid networks, and [41]| proposes
virtual-path-based routing in ring/grid networks.

Waiting Approach. Due to photon loss, establishing long-distance entanglement be-
tween remote nodes at L distance by direct transmission yields EP rates that decay
exponentially with L. DLCZ protocol |76, 225] broke this exponential barrier us-
ing 2* equidistant intermediate nodes to perform entanglement-swapping operations,
implicitly over a balanced binary tree, with a Waiting protocol; this makes the EP
generation rate decay only polynomially in L. More recently, Caleffi [35] formulated
the entanglement generation rate on a given path between two nodes, under the more
realistic condition where the intermediate nodes in the path may not all be equidis-
tant, but still considered only balanced trees. Their path-based metric was then used
to select the optimal path by enumerating over the exponentially many paths in the
network.

Our Approach (vs. [35]). Though [35] considers only balanced trees, its brute-force
algorithm is literally impossible to run for networks more than a few tens of nodes.
In our work, we observe that a path has many swapping trees, and, in general, im-
balanced trees may even be better; see Figure 6.4. Thus, [95]| design a polynomial-
time dynamic programming (DP) algorithm that delivers an optimal high-fidelity
swapping-tree; the approach effectively considers all possible swapping trees, not just
balanced ones (note that, even over a single path, there are exponentially many trees).
Our Balanced-Tree Heuristic (§6.4) is closer to [35]’s work, in that both consider only
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Figure 6.4: Consider the path in (a). The imbalanced tree of (b) has a higher EP
generation rate than that of the balanced tree of (c). Here, the numbers represent
the EP generation rates over adjacent links or node-pairs.

balanced trees; however, we use a heuristic metric that facilitates a polynomial-time
Dijkstra-like heuristic to select the optimal path, while their recursive metric ¢ (al-
beit more accurate than ours) is not amenable to an efficient (polynomial-time) search
algorithm.

Other Works. In [125], Jiang et al. address a related problem; given a path with
uniform link lengths, they give an algorithm for selecting an optimal sequence of
swapping and purification operations to produce an EP with fidelity constraints. In
other recent works, Dahlberg et al [62] design physical and link layer protocols of a
quantum network stack, and [139] proposes a data plane protocol to generate EPs
within decoherence thresholds along a given routing path. More recently, Bugalho et
al. [34] propose an algorithm to efficiently distribute multipartite entanglement across
over than two nodes. [101] proposes two entanglement scheduling and distribution
algorithms in a buffered quantum network, where one is for commodities having
deadlines and the other not having deadlines. [100] explores the fundamental trade-off
between the throughput and entanglement fidelity in quantum networks and proposes
an approximation scheme to approximate the achievable worst-case fidelity. We have
extended this work of bipartite entanglement generation to multipartite entanglement
(graph state) generation using linear programming [85].

6.4 Balanced-Tree Heuristic for QNR-SP

The DP-based algorithms presented in [95]| for the QNR-SP problem have high time
complexity, and thus, may not be practical for real-time route finding in large net-
works. In this section, we develop an almost-linear time heuristic for the QNR-SP
problem, based on the classic Dijkstra shortest path algorithm; the designed heuristic

SWe note that their formula (Eqn. 10 in [35]) is incorrect as it either ignores the 3/2 factor or
assumes the EP generations to be synchronized across all links. In addition, their expression for
"qubit age" ignores the "waiting for ES " time completely.
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performs close to the DP-based algorithms in our empirical studies.

Basic Idea. The main reason for the high complexity of our DP-based algorithms
in [95] is that the goal of the QNR-SP problem is to select an optimal swapping tree
rather than a path. One way to circumvent this challenge efficiently while still select-
ing near-optimal swapping tree, is to restrict ourselves to only “balanced” swapping
trees. This restriction allows us to think in terms of selection of paths—rather than
trees—since each path has a unique” balanced swapping tree. We can then develop an
appropriate path metric based on the above and design a Dijkstra-like algorithm to
select an (s, d) path that has the optimal metric value. We note that Caleffi [35] also
proposed a path metric based on balanced swapping trees, but their metric, though
accurate, only had a recursive formulation without a closed-form expression—and
hence, was ultimately not useful in designing an efficient algorithm. In contrast, we
develop an approximate metric with a closed-form expression, based on the "bottle-
neck" link, as follows.

Path Metric M. Consider a path P = (s, 1,9, ...,2,,d) from s to d, with links
(s,z1), (z1,22),...,(x,,d) with given EP latencies. We define the path metric for
path P, M(P), as the EP generation latency of a balanced swapping over P, which
can be estimated as follows. Let L be the link in P with maximum generation latency.
If L’s depth (distance from the root) is the maximum in a throttled swapping tree,
then we can easily determine the accurate generation latency of the tree. However, in
general, L may not have the maximum depth, in which case we can still estimate the
tree’s latency approximately, if the tree is balanced, as follows. In balanced swapping
trees, assuming the maximum latency link L to be at the maximum depth, gives us
a constant-factor approximation of the tree’s generation latency. Thus, let us assume
L to be at the maximum depth of a balanced tree over P; this maximum depth is
d = [(log, |P|)]. Let the generation latency of L be Ty. If we ignore the t, + ¢, term
in Eqn. 6.1 , then, the generation latency of a throttled swapping tree can be easily
estimated to T(%%b)d. The term t, + . can also be incorporated as follows. Let T'(7)
denote the expected latency of the ancestor of L at a distance ¢ from L. Then, we
get the recursive equation: T'(i) = (3T(i — 1) + t, + tc)/pp- Then, the path metric
value M (P) for path P is given by T'(d), the generation latency of the tree’s root at
a distance of d from L, and is equal to:

M(P)=T(d) = p Ty + [(p* = 1)/(p — D] (ts + tc) /Do

where p = 3/(2py) and d = [(log, |P|)]. The above is a (1+3/(2py))-factor approxi-
mation latency of a balanced and throttled swapping tree over P.

Optimal Balanced-Tree Selection. The above path-metric M () is a monotonically
increasing function over paths, i.e., if a path P; is a sub-sequence of another path
Py, then M(Py) < M(P;). Thus, we can tailor the classical Dijkstra’s shortest path
algorithm to select a (s,d) path with minimum A (P) value, using the link’s EP

“In fact, there can be multiple balanced trees over a path whose length is not a power of 2, but,
since they differ minimally in our context, we can pick a unique way of constructing a balanced tree
over a path.
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Figure 6.5: Qubit parameters in a swapping tree used to compute the age of a qubit
q at a leaf node [(q). Here, I(q) is the left-most leaf of the subtree T(q).

generation latencies as their weights. We refer to this algorithm as Balanced-Tree,
and it can be implemented with a time complexity of O(m + nlogn) using Fibonacci
heaps, where m is the number of edges and n is the number of nodes in the network.

Incorporating Fidelity Constraints.

Definition 1. (G)iven a swapping tree, the total time spent by a qubit in a swapping
tree is the time spent from its “birth” via an atom-photon EP generation at a node
till its consumption in a swapping operation or in the generation of the tree’s root
EP. We refer to this as a qubit’s age. The maximum age over all qubits in a swapping
tree is called the tree’s (expected) age. See Fig. 6.5. i

Fidelity constraints in our path-metric-based setting can be handled by essentially
computing the optimal path for each path length (number of hops in the path) up to
71, and then pick the best path among them that satisfies the fidelity constraints. This
obviously limits the number of leaves to 7; and addresses the operations-based fidelity
degradation. The above also addresses the decoherence/age constraint, since it is easy
to see that the age of a balanced swapping tree can be very closely approximated in
terms of the latency and the number of leaves. Now, to compute the optimal path
for each path length, we can use a simple dynamic programming approach that run
in O(mm) time where m is the number of edges and 7; is the constraint on number
of leaves.

6.5 Evaluations

The goal of our evaluations is to compare the EP generation rates, evaluate the fidelity
of generated EPs, and validate our analytical models. We implement the various
schemes over a discrete event simulator for QNs called NetSquid [60]. The NetSquid
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simulator accurately models various QN components/aspects, and in particular, we
are able to define various QN components and simulate swapping-trees protocols by
implementing gate operations in entanglement swapping. Other existing simulators
include open-source SeQUeNCe [278] and A?Tango [323] that is based on SeQUeNCe
for entanglement generation between two remote atom-ensemble nodes.

L L 4 L 4 9
X0 X1 X2 X3 X4
® BSM @ Manipulation » Completion

BSM Succeeds:  ---» BSM result (bits) sent for manipulation

—-— ACK to signal a subtree’s completion

BSM Fails: —— ACK to signal links to start accepting EPs

Figure 6.6: Swapping Tree Protocol lllustration. The shown tree is a certain hierarchy
of nodes to illustrate the BSM operation in the swapping-tree protocol. A link-layer
protocol continuously generates EPs over links (z¢, z2) and (22, z4). On receiving EP
on links on either side, x; (x3) attempts a BSM operation on the stored qubit atoms.
If the BSM succeeds, x1 (x3) sends two classical bits (solid green arrows) to xs (z4)
for desired manipulation/correction after which x5 (z4) sends an ACK (dashed green
arrows) to the other end-node xy (z2) to complete the EP generation. If BSM at x4
and z3 are both successful, then x5 attempts the BSM as above. If a BSM at say x;
fails, that x; failure signals (red arrows) to all the descendant nodes of the subtree
rooted at x; so that they can start accepting new EPs from the link layer protocol.
Note that here node x5 plays multiple roles and hence appears at multiple places in
the figure.

Swapping Tree Protocol. Our algorithms compute swapping tree(s), and we need
a way to implement them on a network. We build our protocol on top of the link layer
of [62], which is delegated with the task of continuously generating EPs on a link at a
desired rate (as per the swapping tree specifications). Note that a link (a, b) may be in
multiple swapping trees, and hence, may need to handle multiple link-layer requests
at the same time; we implement such link-layer requests by creating independent
atom-photon generators at a and b, with one pair of synchronized generators for each
link-layer request. As the links generate continuous EPs at desired rates, we need a
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protocol to swap the EPs. Omitting the tedious bookkeeping details, the key aspect
of the protocol is that the swap operation is done only when both the appropriate
EP pairs have arrived. We implement all the gate operations (including, atomic and
optical BSMs) within NetSquid to keep track of the fidelity of the qubits. On BSM
success, the swapping node transmits classical bits to the end node which manipulates
its qubit and sends the final ack to the other end node. On BSM failure, a classical
ack is sent to all descendant link leaves, so that they can now start accepting new
link EPs; note that in our protocol, a link [ does not accept any more EPs, while its
ancestor is waiting for its sibling’s EP. See Fig. 6.6.

Simulation Setting. We use a similar setting as in the recent work [230]. By
default, we use a network spread over an area of 100km x 100km. We use the Waxman
model [267], used to create Internet topologies, to randomly distribute the nodes and
create links; we use the maximum link distance to be 10km. We vary the number of
nodes from 25 to 500, with 100 as the default value. We choose the two parameters in
the Waxman model to maintain the number of links to 3% of the complete graph (to
ensure an average degree of 3 to 15 nodes). For the QNR-SP problem, we pick (s, d)
pairs within a certain range of distance, with the default being 30-40 kms.

Parameter Values. We use parameter values mostly similar to the ones used in [35]
corresponding to a single-atom-based quantum memory platform and vary some of
them. In particular, we use the atomic-BSM probability of success (p,) to be 0.4
and latency () to be 10 u secs; in some plots, we vary p, from 0.2 to 0.6. The
optical-BSM probability of success (pyp) is half of p,. We use atom-photon generation
times (¢,) and probability of success (p,) as 50 psec and 0.33 respectively. Finally,
we use photon transmission success probability as e~%/(2%) [35] where L is the channel
attenuation length (chosen as 20km for an optical fiber) and d is the distance between
the nodes. Each node’s memory size is randomly chosen within a range of 15 to 20
units. Fidelity is modeled in NetSquid using two parameter values, viz., depolar-
ization (for decoherence) and dephasing (for operations-driven) rates. We choose a
decoherence time of two seconds based on achievable values with single-atom mem-
ory platforms [248]; note that decoherence times of even several minutes [222, 236]
to hours [262, 320| has been demonstrated for other applicable memory platforms.
Accordingly, we choose a depolarization rate of 0.01 such that the fidelity after a
second is 90%. Similarly, we choose a dephasing rate of 1000 which corresponds to a

link EP fidelity of 99.5% [40].

Algorithms and Performance Metrics. To compare our techniques with prior ap-
proaches, we implement the most recently proposed approaches, viz., (i) the WaitLess-
based linear programming (LP) approach from [40] (called Delft-LP here), (ii) Q-Cast
approach from [230] which is WaitLess-based but uses multiple links and requires
memories. The Waiting-based algorithm by Caleffi [35] uses an exponential-time ap-
proach, and is thus compared only for small networks. The [200] and [41] approaches
are not compared as they were found to be inferior to Q-Cast. Algorithms DP-0PT
and DP-Approx in [95] are also being compared. We compare our Balanced-Tree
with all the above-mentioned algorithms largely in terms of EP generation rates and
the execution times.
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Figure 6.7: Compare the performance with Caleffi in (a) low-density network and (b)
high-density network.

For all algorithms except for Q-Cast, we use only one link between adjacent nodes,
since only Q-Cast takes advantage of multiple links in a creative way. In particular,
for Q-Cast, we use W = 1,5, or 10 sub-links (|230] calls them channels) on each link,
with the node and link "capacity" divided equally among them. We note that in
Q-Cast each node requires 2 memories (2 for each sub-link) with sufficient coherence
time to allow for the entire swapping operation over the path to be completed. The
Delft-LP approach explicitly assumes the generation of link EPs is deterministic,
i.e., the value p,?p.?py, is 1, and does not model node generation rates. We address
these differences by extending their LP formulation: (i) We add a constraint on node
generation rates, and (ii) add a p,®pe(i,7)*pey factor to each link (i, ) in any path
extracted from their LP solution.

Comparison with [35] for QNR-SP Problem. Note that [35] gives only an QNR-SP
algorithm referred to as Caleffi; it takes exponential time making it infeasible to
run for network sizes much larger than 15-20. In particular, for network sizes 17-
20, it takes several hours, and our preliminary analysis suggests that it will take
of the order of 10 years on our 100-node network. See Table 6.1. Thus, we use
a small network of 15 nodes over a 25km x 25km area; we consider average node
degrees of 3 or 6. See Fig.6.7. We see that DP-OPT outperforms Caleffi by 10%
on an average for the sparser graph and minimally for the denser graph. We see
that DP-Approx performs similarly to DP-0PT, while Balanced-Tree is outperformed
slightly by Caleffi; however, for this small network, since the DP-0PT and DP-Approx
algorithms only take 10-100s of msecs (Table 6.1), Balanced-Tree need not be used
in practice.

QNR-SP Problem (Single Tree) Results. We start with comparing various schemes
for the QNR-SP problem, in terms of EP generation rate. We compare DP-Approx,
DP-0PT, Balanced-Tree, SP, and Q-Cast; See Fig. 6.8, where we plot the EP gener-
ation rate for various schemes for varying number of nodes, (s,d) distance, p,, and
network link density. We observe that DP-Approx and DP-0PT perform very closely,
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Figure 6.8: QNR-SP Problem: EP Generation Rates for varying parameters.
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Figure 6.9: The execution time comparison of various algorithms for QNR-SP algo-
rithms.

with the Balanced-Tree heuristic performing close to them; all these three schemes
outperform the Q-Cast schemes (for W = 5,10 sub-links) by an order of magnitude.
We don’t plot Q-Cast for W = 1 sub-links, as it performs much worse (less than
1073 EP/sec). We note that Q-Cast’s EP rates here are much lower than the ones
published in [230], because [230] uses link EP success probability of 0.1 or more, while
in our more realistic model, the link EP success probability is p,?p.*po, = 0.012 for
the default p, value. We reiterate that our schemes require only 2 memory units per
node, while the Q-Cast schemes require 2WW units. The main reason for poor per-
formance of Q-Cast (in spite of higher memory and link synchronization) is that, in
the WaitLess model, the EP generation over a path is a very low probability event—
essentially p' where p is the link-EP success probability and [ is the path length, for
the case of W = 1 (the analysis for higher W’s is involved [230]). Finally, our pro-
posed techniques also outperform the SP algorithm, especially when the number of
possible paths (trees) between (s, d) pair increases. In addition, we see that perfor-
mance increases with an increase in p,, number of nodes, or network link density, as
expected due to the availability of better trees/paths; it also increases with a decrease
in (s,d) distance as fewer hops are needed.

Execution Times. We ran our simulations on an Intel i7-8700 CPU machine, and
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observed that the WaitLess algorithms as well our Balanced-Tree and ITER-Bal
heuristics run in fraction of a second even for a 500-node network; thus, they can be
used in real-time. Note that since our problems depend on real-time network state
(residual capacities), the algorithms must run very fast. The other algorithms (viz.,
DP-0PT, DP-Approx, and ITER-DPA) can take minutes to hours on large networks, and
hence, may be impractical on large network without significant optimization and/or
parallelization. See Fig 6.9.

Table 6.1: Execution times of QNR-SP algorithm over small networks

Algorithm Number of nodes
10 13 15 16 18 20
Balanced-Tree 239us 360us  373us  492us  530us  5d2us
DP-Approx 4dms  10ms 14.7ms 17.6ms 28ms 34ms
DP-0PT 148ms 363ms 572ms  706ms 1s 1.7s
Caleffi [35] 92ms 4.6s 14s  26mins 3.2hrs 12.8hrs

Here, we give execution times of different algorithms especially Caleffi’s for small
networks of 10-20 nodes. See Table 6.1. We see that Balanced-Tree and DP-Approx
take fractions of a second, while DP-0PT takes upto 2 seconds. However, as expected
Caleffi’s execution time increases exponentially with increase in number of nodes
— with 20-node network takes 10+ hours. Below, we further estimate Caleffi’s
execution time for larger graphs.

6.6 Conclusion

We have designed techniques for efficient generation of EP to facilitate quantum
network communication, by selecting efficient swapping trees in a Waiting protocol.
By extensive simulations, we demonstrated the effectiveness of our Balanced-Tree,
i.e., compared to DP-Approx, it significantly decreases the time complexity while the
performance drop is only minor.
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Appendix

Use S number of sensors to determine the power for the hypothesis at location [*,
such that the hypothesis has the maximum probability. Let N(u1,0%),- -+, N(us, 0%)
be the PDs of the S sensors, built during the training phase, when a transmitter with
power p* is transmitting at location I*. Let x = {x1, 29, , x5} be the observation
vector of the S sensors during the localization phase. Then we predict the hypothesis
at location [* most likely has the power p* 4 ¢,, where

S
Zj:l g%(xj — 1)
0p = !

The deduction relies on the assumption that the path loss between a transmitter and
receiver is independent of transmit power, or unchanged. The likelihood of x, given

N = {N(u1,6%), -+, N(us,0%)} and 4, is,
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